fhiso’

Extended Legacy Format (ELF):
Serialisation Format

11 December 2019

Editors:
Richard Smith
Luther Tychonievich

Editorial note — This is an exploratory draft of the serialisation format for FHISO’s pro-
posed suite of Extended Legacy Format (ELF) standards. This document is not endorsed by
the FHISO membership, and may be updated, replaced or obsoleted by other documents at
any time.

Comments on this draft should be directed to the tsc-public@fhiso.org mailing list.

FHISO’s Extended Legacy Format (or ELF) is a hierarchical serialisation format and genealogical
data model that is fully compatible with GEDCOM, but with the addition of a structured extensibility
mechanism. It also clarifies some ambiguities that were present in GEDCOM and documents best
current practice.

The GEDCOM file format developed by The Church of Jesus Christ of Latter-day Saints is the de facto
standard for the exchange of genealogical data between applications and data providers. Its most re-
cent version is GEDCOM 5.5.1 which was produced in 1999, but despite many technological advances
since then, GEDCOM has remained unchanged.

Note — A draft of [GEDCOM 5.5.1] was released in October 1999. It came to be considered
to have the status of a standard and was widely implemented as such, despite not being
formally published as a standard. This omission was corrected in November 2019 when
the Church published it as a standard, unaltered except for the title page.

FHISO are undertaking a program of work to produce a modernised yet backward-compatible refor-
mulation of GEDCOM under the name ELF, the new name having been chosen to avoid confusion with
any other updates or extensions to GEDCOM, or any future use of the name by The Church of Jesus
Christ of Latter-day Saints. This document is one of five that form the initial suite of ELF standards,
known collectively as ELF 1.0.0:

— ELF: Primer. This is not a formal standard, but is being released alongside the ELF standards
to provide a broad overview of ELF written in a less formal style. It gives particular emphasis
to how ELF differs from GEDCOM.

— ELF: Serialisation Format. This standard defines a general-purpose serialisation format
based on the GEDCOM data format which encodes a dataset as a hierarchical series of lines,
and provides low-level facilities such as escaping.


http://tech.fhiso.org/tsc-public

Extended Legacy Format (ELF): Serialisation Format

— ELF: Schemas. This standard defines flexible extensibility and validation mechanisms on top
of the serialisation layer. Although it is an opTiONAL component of ELF 1.0.0, future ELF exten-
sions to ELF will be defined using ELF schemas.

— ELF: Date, Age and Time Microformats. This standard defines microformats for represent-
ing dates, ages and times in arbitrary calendars, together with how they are applied to the
Gregorian, Julian, French Republican and Hebrew calendars.

— ELF: Data Model. This standard defines a data model based on the lineage-linked GEDCOM
form, reformulated to be usable with the ELF serialisation model and schemas. Itis not a major
update to the GEDCOM data model, but rather a basis for future extension and revision.

1 Conventions used

Where this standard gives a specific technical meaning to a word or phrase, that word or phrase is
formatted in bold text in its initial definition, and in italics when used elsewhere. The key words MuUsT,
MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED,
MAY and OPTIONAL in this standard are to be interpreted as described in [RFC 2119].

An application is conformant with this standard if and only if it obeys all the requirements and
prohibitions contained in this document, as indicated by use of the words MUST, MUST NOT, REQUIRED,
SHALL and SHALL NOT, and the relevant parts of its normative references. Standards referencing this
standard musT NOT loosen any of the requirements and prohibitions made by this standard, nor place
additional requirements or prohibitions on the constructs defined herein.

Note — Derived standards are not allowed to add or remove requirements or prohibitions
on the facilities defined herein so as to preserve interoperability between applications. Data
generated by one conformant application must always be acceptable to another conformant
application, regardless of what additional standards each may conform to.

This standard depends on FHISO’s Basic Concepts for Genealogical Standards standard. To be con-
formant with this standard, an application musT also be conformant with the referenced parts of
[Basic Concepts]. Concepts defined in that standard are used here without further definition.

Note — In particular, precise meaning of character, code point, string, whitespace, whites-
pace normalisation, line break, line break normalisation, language tag and langauge-tagged
string are given in [Basic Concepts]. The word tag is defined in [Basic Concepts], but this
standard does not make use of that definition and uses the word for an unrelated concept
defined in §4.1.3.

Certain facilities in this standard are described as deprecated, which is a warning that they are likely
to be removed from a future version of this standard. This has no bearing on whether a conformant
application must implement the facility: they may be REQUIRED, RECOMMENDED Or OPTIONAL as de-
scribed in this standard.

Indented text in grey or coloured boxes does not form a normative part of this standard, and is la-
belled as either an example or a note.


https://tools.ietf.org/html/rfc2119

Extended Legacy Format (ELF): Serialisation Format

Editorial note— Editorial notes, such as this, are used to record outstanding issues, or points
where there is not yet consensus; they will be resolved and removed for the final standard.
Examples and notes will be retained in the standard.

The grammar given here uses the form of EBNF notation defined in §6 of [XML], except that no sig-
nificance is attached to the capitalisation of grammar symbols. Conforming applications MUST NOT
generate data not conforming to the syntax given here, but non-conforming syntax MAy be accepted
and processed by a conforming application in an implementation-defined manner, providing a warn-
ing is issued to the user, except where this standard says otherwise.

Note — In this form of EBNF, whitespace is only permitted where it is explicitly stated in the
grammar. It is not automatically permitted between arbitrary tokens in the grammar.

The grammar productions in this standard uses the S and Char productions defined in §2 of [Basic
Concepts] to match any non-empty sequence of whitespace characters or any valid character, respec-
tively.

2 Overview

The ELF serialisation format is a structured, line-based text format for encoding data in a hierarchical
manner that is both machine-readable and human-readable.

At a logical level, an ELF document is built from structures, the name ELF gives to the basic hier-
archical data structures used to represent data. ELF uses two types of structure: tagged structures
and typed structures. The serialisation layer described in this standard only deals with tagged struc-
tures, and the word structure is frequently used in this document to refer to what is properly a tagged
structure.

A tagged structure consists of:

— an OPTIONAL cross-reference identifier used to identify the structure within the document;

— atag, which is a string encoding the meaning of the structure;

— an OPTIONAL payload, which can be considered the value of the structure; and

— a sequence of zero or more child structures known as its substructures. These can nest arbi-
trarily deep in a hierarchical manner.

Note — This maps quite closely, though not perfectly, to a standard entity-attribute-value
model. In a structure with one or more substructures, the parent structure serves as the en-
tity being described, and its substructures each encode an attribute-value pair. In a struc-
ture with a payload, the tag and payload function in as an attribute-value pairs, with the
tag identifying the particular piece of information being recorded and the payload being
its value. It is normal for a structure to either have a payload or substructures, but not
both; however this not a requirement of ELF, and the [ELF Data Model] contains several
structures where this is not true. The FAMC structure is an example. Such structures do not
neatly fit into the entity-attribute-value paradigm.


https://www.w3.org/TR/xml11/

Extended Legacy Format (ELF): Serialisation Format

The tag describes how the structure is to be interpreted, and structures are commonly referred to by
their tag in this standard.

Example — A structure whose tag is the string “NOTE” will often be called a NOTE structure.

Note — This standard defines a small number of tags which are used for recording data
needed by at the serialisation layer to correctly interpret an ELF document. The [ELF Data
Model] defines a large set of tags for use in recording genealogical data in a GEDCOM-
compatible manner. However ELF is a general-purpose data format that can be used to
represent arbitrary data; [ELF Schemas] provides a mechanism for defining tags for other
purposes, including to extend the [ELF Data Model].

The payload is either a language-tagged string or a pointer to another structure. A payload which is a
language-tagged string is referred to as a string payload.

Note — A language-tagged string is defined in §3.1 of [Basic Concepts] as a string which is
tagged with a language tag. Making the payload a language-tagged string rather than a plain
string is an extension to GEDCOM. Language tags are defined in §3 of [Basic Concepts].

Example — A simple example structure might have a tag of “AUTH” and a payload which is a
language-tagged string consisting of the string “#ARE%” tagged with the language tag ja.
The AUTH tag is defined in [ELF Data Model] as meaning “the name of the primary creator
of the source”, and #AE 4 is the name of genealogist Suzuki Matoshi, written in his native
Japanese language, which is denoted by the language tag ja.

When the payload of a structure is a pointer, this represents a link between two structures, with the
pointer in one structure referencing the cross-reference identifier in a second structure.

Note —In this version of ELF, a pointer musT have the same lexical form as a cross-reference
identifier used in the same document. Both [GEDCOM 5.5.1] and this ELF standard reserve
syntax so that a future standard may use pointers to reference structures in other docu-
ments.

Example — The [ELF Data Model] uses pointers to form links between family records de-
noted by the FAM tag, and individual records denoted by the INDI tag. These links are how
genealogical relationships are represented in ELF. A FAM structure may contain a CHIL sub-
structure whose payload is a pointer. Elsewhere in the document, there will be an INDI
structure whose cross-reference identifier is identical to the pointer in the payload of the
CHIL substructure of the FAMC structure. This is stating that the person represented by the
INDI structure is a child of the family represented by the FAM structure.

A top-level structure, meaning a structure which is not a substructure of any other structure, is called
arecord. An ELF document or dataset can have arbitrarily many records.



Extended Legacy Format (ELF): Serialisation Format

Editorial note— This is either not strictly true or atleast misleading, because HEAD and TRLR
are not records. Probably.

Note — The expressiveness of ELF is similar to that of XML. ELF’s structures serve the same
role as elements in XML, and nest similarly. But unlike XML, which has a single root-level
element, an ELF dataset typically has multiple records.

At a lexical level, a structure is encoded as sequence of lines, each terminated with a line break. The
first line encodes the cross-reference identifier, tag and payload of the structure, while any substruc-
tures are encoded in order on subsequent lines. Each line consists of the following components, in
order, separated by whitespace:

— alevel, which is an integer that records how deeply the current structure is nested;
— the oPTIONAL cross-reference identifier of the structure being encoded by the line;
— the tag of the structure being encoded; and

— the opTIONAL payload of the structure.

Example —

HEAD

CHAR UTF-8

GEDC

VERS 5.5.1

FORM LINEAGE-LINKED
ELF 1.0.0

INDI

NAME Charlemagne
TRLR

O = O = NN = = O

This ELF document has three lines with level 0 which mark the start of the three top-level
structures or records. These records have, respectively, three, one and zero substructures,
which are denoted by the lines with level 1. The structure represented by the line with
a ELF tag is a substructure of the HEAD record because there is no intervening line with
level one less than 1; the structure represented by the NAME line naming Charlemagne is a
substructure of the INDI record, as that is the preceding line with a level 0. The TRLR record
is an example of a record with no substructures.

Five of the lines in this example document have a payload. For example, the payload of the
FORM line is the string “LINEAGE -LINKED”, while the payload of the NAME line is the string
“Charlemagne”. None of the lines in this example have payloads which are pointers, nor do
any have a cross-reference identifier.



Extended Legacy Format (ELF): Serialisation Format

2.1 ELF applications

A conformant application which parses the ELF serialisation format is called an ELF parser. A con-
formant application which outputs data in the ELF serialisation format is called an ELF writer.

Note — Many applications will be both ELF parsers and ELF writers.

The input to an ELF parser and output of an ELF writer is an octet stream, which is a sequence of
8-bit bytes or octets each with a value between 0 and 255.

Note — An octet stream is typically read from or written to a disk or the network. This
standard does not define how these should be read, nor how the octets are represented in
storage or in transit on a network.

This standard defines how an octet stream is parsed into a dataset, and how a dataset is serialised into
an octet stream. Overviews of these processes can be found in §2.2 and §2.3, respectively. An octet
stream which this standard requires an ELF parser to be able to read is called a conformant source.

Note — An octet stream which an ELF parser MmusT be able to read successfully, but can
process in an implementation-defined manner is nonetheless a conformant source.

An octet stream which is not a conformant source is called a non-conformant source. If the input to
an ELF parser is not a conformant source, unless this standard says otherwise, the application MusT
either terminate processing that octet stream or present a warning or error message to the user. If it
continues processing, it does so in an implementation-defined manner.

This standard also recognises a class of application which reads data in the ELF serialisation format,
applies a small number of changes to that data, and immediately produces output in the ELF seriali-
sation format which is identical to the input, octet for octet, other than where the requested changes
have been made. Such an application is called an ELF editor.

Note — ELF editors are intended to small programs or scripts that apply simple modifica-
tions to datasets, typically with little or no human interaction. For example, script which
replaces some particular deprecated feature in the dataset with an equivalent would be an
ELF editor. This definition of an ELF editor is not intended to include large, feature-rich ap-
plications which read ELF into an internal database, allow users to view and modify most
aspects of the data, and later export it as ELF.

ELF editors are not required to conform to the full requirements of an ELF parser or ELF writer. The
only requirement this standard places on ELF editors is that, when acting on a conformant source, they
musT either generate output which is a conformant source, or present a warning or error message to
the user, or terminate.

Note — This is a considerably weaker requirement than that placed on ELF parsers and
ELF writers. In particular, there is no requirement for an ELF editor to detect invalid input,
as an ELF parser is generally required to; nor do the stricter requirements on the output



Extended Legacy Format (ELF): Serialisation Format

allowed from ELF writers apply. These relaxations allow ELF editors to do in-place editing
of the octet stream, without fully parsing those parts of their input which are not going to
be changed.

This standard has an optioNaL dependency on the [ELF Schemas] standard, which provides addi-
tional functionality for validating ELF documents and extending the ELF data model. An application
which conforms to the [ELF Schemas] standard is described as schema-aware; other applications are
described as non-schema-aware.

2.2 Parsing
The parsing process can be summarised as follows:

1. An octet stream is converted to a sequence of line strings by:
a. determining its character encoding by
1. identifying the detected character encoding per §3.1, and
ii. using that detected character encoding to look for a specified character encoding in
the serialisation metadata per §3.2;
b. converting octets to characters using that character encoding; and
c. splitting on line breaks per §3.4.
2. Line strings are converted into records by:
a. parsing line strings into lines per §4.1;
b. assembling lines into records, each of which are hierarchies of tagged structures, as de-
scribed in §4.2.1.
3. The header record is parsed for serialisation metadata per §5.2.
4. A second pass is made recursively over each record, processing it per §4.2.2:
a. if the parser is schema-aware, converting tagged structures into typed structures, as de-
scribed in [ELF Schemas]; and
b. each string payload is unescaped by:
i. identifying all escaped at signs and escape sequences per §6.5.1;
ii. verifying that each escape sequence is a permitted escape per §6.5.2;
iii. replacing each escaped at sign with a single “at” sign;
iv. replacing each Unicode escape with the character it encodes per §6.3; and
V. merging continuation lines per §6.5.3.

2.3 Serialisation
The semantics of serialisation are defined by the following procedural outline.

2. The tagged structures are ordered and additional tagged structures created to represent serial-
isation metadata.
This step cannot happen before tagging because tagging may generate serialisation metadata
that needs to be included in the tagged structures.
3. Payloads are converted to create xref structures by simultaneously
— assigning xref ids and replacing pointer-valued payloads with string-valued xrefs



Extended Legacy Format (ELF): Serialisation Format

— escaping @ characters
— preserving valid escapes
— escaping unrepresentable characters
Semantically, these actions must happen concurrently because none of them should be applied
to the others’ results.
This step cannot happen before tagging because tags are needed to determine the set of valid
escapes. This step cannot happen before adding serialisation metadata because it is applied to
the serialisation metadata as well.
4. The dataset is converted to a sequence of lines by
— assigning levels
— splitting payloads, if needed, using CONT and CONC
— ordering substructures in a preorder traversal of the tagged structures
This step cannot happen before payload conversion because valid split points are dependant
on proper escaping. This step must happen before encoding as octets because valid split points
are determined by character, not octet.
5. The sequence of lines is converted to an octet stream by
— concatenating the lines with line-break terminators
— converting strings to octets using the character encoding

2.4 Glossary
Editorial note — Record and structure are now defined in §2, while character encoding is de-
fined in §3. Dataset and document are very nearly defined in §2 too, but we don’t currently
discuss metadata there — this is an issue which needs resolving.

Dataset
Metadata and a document.

Document
An unordered set of structures.

Metadata
A collections of structures intended to describe information about the dataset as a whole.
The relative order of structures with the same structure type identifier SHALL be preserved
within this collection; the relative order of structures with distinct structure type identifiers is
not defined by this specification.

ELF Schema
Information needed to correctly parse tagged structures into structures: a mapping between
structure type identifiers and tags and metadata relating to valid escapes and prefixes.

Serialisation Metadata
Tagged structures inserted during serialisation and removed (with all its substructures) during
parsing. They are used to serialise the character encoding and ELF schema as well as to separate
the metadata and the document.

Structure — A structure type identifier, which is a term.
— Optionally, a payload which is one of



Extended Legacy Format (ELF): Serialisation Format

— A pointer to another structure, which must be a record within the same dataset.
— A string or subtype thereof.
— One superstructure, which is one of
— Another structure; superstructure links MUST be acyclic.
— The document.
— The metadata.
— A collection of any number of substructures, which are structures.
The relative order of structures with the same structure type identifier SHALL be pre-
served within this collection; the relative order of structures with distinct structure type
identifiers is not defined by this specification.

3 Parsing and serialising line strings

In order to parse an ELF document, an ELF parser sHALL first convert the octet stream into a sequence
of line strings, which are strings containing the unparsed lexical representations of lines.

The way in which octets are mapped to characters is called the character encoding of the document.
ELF supports several different character encodings. Determining which is used is a two-stage process,
with the first stage being to determine the detected character encoding of the octet stream per §3.1.
Frequently there will be no detected character encoding.

Note — The purpose of this step is twofold: first, it allows non-ASCII-compatible character
encodings like UTF-16 to be supported; and secondly, it removes any byte-order mark that
might be present in the octet stream.

Next, the initial portion of the octet stream is converted to characters using the detected character
encoding, failing which in an ASCII-compatible manner. This character sequence is then scanned for
a CHAR line whose payload identifies the specified character encoding. This process is described
in §3.2. If there is a specified character encoding, it is used as the character encoding for the ELF
document; otherwise the detected character encoding is used, failing which the default is the ANSEL
character encoding. Considerations for reading specific character encodings can be found in §3.3.

Once the character encoding is determined, the octet stream can be converted into a sequence of
characters which are assembled into line strings as described in §3.4. The process of serialising a line
string back into an octet stream is far simpler as the intended character encoding is already known;
this process is described in §3.5.



Extended Legacy Format (ELF): Serialisation Format

3.1 Detecting a character encoding
Note— For applications that choose not to support the oprioNAaL UTF-16 character encoding,
the process described in this section can be as simple as skipping over a UTF-8 byte-order
mark, and determining the detected character encoding to be UTF-8 if a byte-order mark
was present.

If the octet stream begins with a byte-order mark (U+FEFF) encoded in UTF-8, the detected character
encoding sHALL be UTF-8; or if the application supports the optioNaL UTF-16 encoding and the octet
steam begins with a byte-order mark encoded in UTF-16 of either endianness, the detected character
encoding sHALL be UTF-16 of the appropriate endianness. The byte-order mark sHALL be removed
from the octet stream before further processing.

Otherwise, if the application supports the oprioNaL UTF-16 encoding and the octet stream begins with
any ASCII character (U+0001 to U+007F) encoded in UTF-16 of either endianness, this encoding SHALL
be the detected character encoding.

Example — ELF files typically begin with the character “0”. In the big endian form of UTF-16,
sometimes called UTF-16BE, this is encoded with the hexadecimal octets 00 30. These two
octets will be detected as an ASCII character encoded in UTF-16, and the detected charcter
encoding will be determined to be UTF-16BE.

Otherwise, applications MAy try to detect other encodings by examining the octet stream in an
implementation-defined manner, but this is NOT RECOMMENDED.

Note — One situation where it might be necessary to try to detect another encoding is if the
application needs to support (as an extension) a character encoding like EBCDIC or UTF-32
which is not compatible with ASCIL

Otherwise, there is no detected character encoding.

Note — In this case, for the octet stream to be understood, it must use a 7- or 8-bit character
encoding that is sufficiently compatible with ASCII that the CHAR line can be read. The only
7 or 8-bit character encodings defined in this standard are ASCII, ANSEL and UTF-8 which
encode ASCII characters identically. These will all be understood correctly if there is no
detected character encoding.

Some character encodings with minor differences from ASCII can also be understood cor-
rectly. An example is the Japanese Shift-JIS character encoding which uses the octets 5C and
7E to encode the yen currency sign (U+00A5) and overline character (U+203E) where ASCII
has a backslash (U+005C) and tilde (U+007E). An application does not need to understand
these characters in order to scan for a CHAR line.

Note — These cases can be summarised as follows, where xx denotes any octet with a hex-
adecimal value between 01 and 7F, inclusive:

10



Extended Legacy Format (ELF): Serialisation Format

Initial octets Detected character encoding

EF BB BF UTF-8, with byte-order mark

FF FE UTF-16, little endian, with byte-order mark

FE FF UTF-16, big endian, with byte-order mark

xx 00 UTF-16, little endian, without byte-order mark
00 xx UTF-16, big endian, without byte-order mark
Otherwise None

3.2 Specified character encodings

To determine the specified character encoding, the initial portion of the octet stream sHALL temporarily
be converted to characters using the detected character encoding.

If there is no detected character encoding, the application SHALL convert each octet to the character
whose code point is the value of octet. An application SHALL issue an error and stop processing the
octet stream if the null octet 00 is encountered. Restricted characters, as defined in §2.3 of [Basic
Concepts], musT be accepted without error while determining the specified character encoding.

Note — This is equivalent to using the ISO-8859-1 character encoding if there is no detected
character encoding. As defined in §2 of [Basic Concepts], code point U+0000 is not a charac-
ter. In principle, the octet 00 might occur in the representation of a valid character in some
character encoding, but almost all character encodings avoid this and it cannot happen in
the ASCII, ANSEL or UTF-8 character encodings.

Characters from the initial portion of the octet stream are parsed into lines strings as described in §3.4.
Each line string is whitespace normalised as described in §2.1 of [Basic Concepts], and all lowercase
ASCII characters (U+0061 to U+007A) converted to the corresponding uppercase characters (U+0041
to U+005A).

Note — Whitespace normalisation and conversion to uppercase only applies for the pur-
pose of determining the specified character set. Neither process is otherwise applied to all
line strings. It is done here to simplify scanning for the specified character set, but without
requiring full parsing of line strings into a lines, which might result in errors if the actual
character encoding differs from the one being used provisionally while scanning for the
specified character encoding.

Once normalised in this manner, the first line string of the file musT be exactly “0 HEAD”; otherwise
the application MusT issue an error and cease parse the octet stream as ELF. If the application en-
counters a subsequent normalised line string beginning with a 0 digit (U+0030) followed by a space
character (U+0020), the application sHALL stop scanning for a specified character encoding.

Note — A line string beginning with a “0” encodes the start of the next record, and therefore
the end of the HEAD record. The specified character encoding is given in a CHAR line in the

11



Extended Legacy Format (ELF): Serialisation Format

HEAD record; a CHAR line found elsewhere in the file MusT NOT be used to supply the specified
character encoding.

If the application encounters a line string beginning with “1 CHAR” followed by a space character
(U+0020) while scanning for the specified character encoding, then the remainder of the line string
SsHALL be used to determine the specified character encoding.

If the remainder of the line string is exactly “ASCII”, “ANSEL” or “UTF -8, then the specified character
encoding sHALL be ASCII, ANSEL or UTF-8, respectively.

Example — It is RECOMMENDED that all ELF documents use UTF-8 and record this using a
CHAR line as follows:

0 HEAD
1 CHAR UTF-8

This CHAR line string will be found while scanning for the specified character encoding. The
line string begins with “1 CHAR” followed by a space character; the remainder of the line
string is “UTF-8” so the specified character encoding is recognised as UTF-8.

Otherwise, if the remainder of the line string is exactly “UNICODE” and the detected character encoding
is UTF-16 in either endianness, the specified character encoding sHALL be the UTF-16 in that endian-
ness.

Note — [GEDCOM 5.5.1] says that the string “UNICODE” is used to specify the UTF-16 encod-
ing, though without naming the encoding as such, and without specifying which endianness
is meant. If the octet stream is a valid ELF document encoded in UTF-16 and the application
supports UTF-16, then the detected character encoding will have been determined accord-

ingly.

Otherwise, the application may determine the specified character encoding from the remainder of
the line string and the detected character encoding in an implementation-defined way. The applica-
tion MAY read one further line string, and if it begins with “2 VERS” followed by a space character
(U+0020), the application mAY also use the remainder of that line string in determining the specified
character encoding.

Example — It is fairly common to find “ANSI” on the CHAR line, though this has never been
a legal option in any version of GEDCOM. It typically refers to one of several Windows code
pages, most frequently CP-1252 which was the Windows default code page for English lan-
guage installations and for several other Western European languages. However other code
pages exist, and an application localised for, say, Hungarian might encode the file using CP-
1250. In principle a VERS line could contain information to specify the particular code page
used, as in the following ELF fragment, but in practice this is rare.

0 HEAD
1 CHAR ANSI

12



Extended Legacy Format (ELF): Serialisation Format

2 VERS 1250

Otherwise, there is no specified character encoding.

If there is a specified character encoding, it SHALL be used as the character encoding of the octet stream.
Otherwise, if there is a detected character encoding, it sHALL be used as the character encoding of the
octet stream. Otherwise, the character encoding sHALL default to be UTF-8.

Note — This is a change from [GEDCOM 5.5.1] where the default is ANSEL; however, since
a CHAR line string is required in all versions of GEDCOM since 5.4, and ELF does not aim to
be compatible with versions older than 5.5, GEDCOM’s default is largely moot. ELF changes
the default, though requires ELF writers to include a CHAR serialisation metadata structure.
A future version of ELF will likely remove this requirement.

If the character encoding is one which the application does not support, the application sHALL issue
an error and stop reading the file.

3.3 Character encodings

ELF parsers are REQUIRED to support reading the ASCII, ANSEL and UTF-8 character encodings. ELF
writers are only REQUIRED to support the UTF-8 character encoding. Support for the UTF-16 character
encoding is oPTIONAL, and applications MAY support it in either its big or little endian forms, both, or
neither. The ASCII, ANSEL and UTF-16 character encodings are all deprecated.

Editorial note — We considered making support for ANSEL oPTIONAL, but after researching
how frequently current GEDCOM files were encoded using ANSEL (as opposed to claiming
to be ANSEL but actually using the ASCII subset of ANSEL), the TSC felt it had to be REQUIRED.

The UTF-8 and UTF-16 character encodings are the Unicode encoding forms defined in §9.2 of [ISO
10646], and the specifics of the big and little endian forms of UTF-16 are defined in §9.3 of [ISO 10646].

Editorial note — Work out whether we’re going to cite ISO 10646 or the Unicode standard,
and get check the section numbers.

Note — UTF-8 is a variable-width character encoding that uses between one and four octets
to encode a character. It is backwards compatible with ASCII, so ASCII characters are en-
coded to a single octet and other characters require more. For example, the Czech given
name “MiloS$” is encoded using the octet sequence 4D 69 6C 6F C5 A1 where the last two
octets encode the character “S”. Only characters outside Unicode’s Basic Multilingual Plane
— that is characters with a code point of U+10000 or higher — are encoded with four octets.
An example is the ancient Chinese character “¥” which is encoded using the octets FO A0
80 A1. Such characters can occasionally be found encoded using six octets (e.g. ED A1l
80 ED BO A1 for “Z”). This form, which is called CESU-8 and is not valid UTF-8, typically
results from an incorrect serialisation of UTF-16 data as UTF-8. Input containing CESU-8

13



Extended Legacy Format (ELF): Serialisation Format

forms but purporting to be UTF-8 is not a conformant source, however ELF parsers MAY
read it providing they issue a warning to the user. ELF writers MUST NOT generate CESU-8
when serialising data as UTF-8.

Note — UTF-16 is also a variable-width character encoding which normally uses two octets
to encode a character, but uses four octets for characters outside the Basic Multilingual
Plane. When only two octets are used, UTF-16 is identical to an earlier fixed-width character
encoding called UCS-2 which was unable to encode characters outside the Basic Multilingual
Plane. Conformant applications are REQUIRED by §2 of [Basic Concepts] to support characters
outside the Basic Multilingual Plane, and therefore applications which opt to support UTF-
16 MusT ensure they do not implement support for only UCS-2.

Note — As UTF-8 and UTF-16 are encodings of Unicode, they naturally decode into a se-
quence of Unicode characters without requiring conversion between character sets.

The character encoding referred to as ASCII in this standard is the US version of ASCII which, for the
purpose of this standard, is defined as the subset of UTF-8 which uses only Unicode characters U+0001
to U+007F.

Note — The US ASCII character encoding is normally defined in [ASCII], but this standard
defines it in terms of [ISO 10646]. This is partly to avoid uncertainty over which of several
incompatible definitions of ASCII is meant, partly because the Unicode standard is much
more readily available than the ASCII one, and partly because ASCII allows certain punc-
tuation marks a be used as combining diacritics when they follow the backspace character
(U+0008). This use of ASCII combining diacritics is not included in [ISO 10646], and is forbid-
denin both GEDCOM and ELF as the backspace character musT NOT occur. Unicode provides
a separate set of combining diacritics which are permitted in ELF.

ANSEL refers to the Extended Latin Alphabet Coded Character Set for Bibliographic Use defined in
[ANSEL]. If an ELF file is determined to use the ANSEL character encoding it MusT be converted into
a sequence of Unicode characters before it can be processed further. This is discussed in §3.3.1.

If other character encodings are supported, they too must be converted into a sequence of Unicode
characters for further processing.

Note — This standard makes no recommendation on how applications should represent
sequences of Unicode characters internally, and the UTF-8, UTF-16 and UTF-32 character
encodings each have advantages.

Editorial note — This standard currently makes no distinction between a character set and a
character encoding, but arguably it would be cleaner to make this distinction. Then UTF-16
and UTF-8 are different character encodings of the same Unicode character set, and ASCII
may be regarded as such too for our purpose; but ANSEL is a different character set and

14



Extended Legacy Format (ELF): Serialisation Format

requires conversion to Unicode. [ISO 10646] makes a further distinction between encoding
forms like UTF-8 and UTF-16, and encoding schemes like UTF-16BE and UTF-16LE.

3.3.1 Converting ANSEL to Unicode
I Editorial note — Add material from ansel-to-unicode.md.

3.4 Line strings

Before characters from the octet stream can be parsed into lines, they must be assembled into line
strings. This is done by appending characters to the line string until a line break is encountered, at
which point the character or characters forming the line break are discarded and a new line string is
begun.

Note — A line break is defined in §2.1 of [Basic Concepts] as a line feed (U+000A), or car-
riage return (U+000D) followed by an opTioNAL line feed (U+000A). Unlike the equivalent
production in [GEDCOM 5.5.1], this does not match a line feed followed by a carriage return
(U+000A U+000D) which was used as a line ending on BBC and Acorn computers in some
specific contexts. In ELF, this sequence is parsed as two line breaks with an intervening
blank line string which gets ignored.

ELF parsers MusT be able to handle arbitrarily long line strings, subject to limits of available system
resources.

Note — This is a change from [GEDCOM 5.5.1] which says that line strings together with the
following line break musT NOT exceed 255 characters. It is no longer common practice to
parse lines using fixed-length buffers, and ELF effectively prohibits this.

Any leading whitespace sHALL be removed from the line string, but trailing whitespace MusT NOT also
be removed except in the case that the line string is entirely whitespace. If this results in a line string
which is an empty string, the empty line string is discarded.

Note — These operations resolve ambiguities in [GEDCOM 5.5.1], and might therefore be a
change from some current implementations’ interpretation of the GEDCOM standard. On
the one hand, §1 of [GEDCOM 5.5.1] say that leading whitespace, including extra line ter-
minators, should be allowed and ignored when reading; on the other hand, the relevant
grammar production does not permit any such leading whitespace. For maximal compat-
ibility with existing data, a conformant ELF application musT accept and ignore leading
whitespace and blank lines, but MUsT NOT generate them.

For trailing whitespace, [GEDCOM 5.5.1] is even less clear. Twice, once in §2 and once in
Appendix A, it states that applications sometimes remove trailing whitespace, but without
saying whether this behaviour is legal; certainly it implies it is not required. There is little
consistency in the behaviour of current applications, so any resolution to this will result in
an incompatibility some applications. In ELF, the trailing whitespace MusT be preserved.

15



Extended Legacy Format (ELF): Serialisation Format

The Unicode escape mechanism defined in §6.3 provides ELF applications with a way of
serialising a value which legitimately ends in whitespace without it being removed by older,
non-ELF-aware applications.

3.5 Serialising line strings

Line strings are serialised by concatenating them together to form a single string, inserting a line
break between each line string and after the last one. All the inserted line breaks musT have identical
lexical forms.

Note — Applications can choose whether to use Windows line endings (U+000D U+000A),
traditional Mac OS line endings (U+000D), or the line endings used on Unix, Linux and mod-
ern Mac OS (U+000A), but MUST NOT to use mix these in the same file.

Finally, the resulting string is encoded into an octet stream using the character encoding that was
documented in the serialisation metadata tagged structure with tag “CHAR” (see §8.1). ELF writers are
only REQUIRED to support the UTF-8 character encoding, and this sHOULD be the default in applications
supporting additional character encodings.

Editorial note — Check the above paragraph. We probably want a later section to define an
output encoding.

If the character encoding is one which allows a byte-order mark (U+FEFF) to be encoded, an ELF
writer MAY prepend one the octet stream. This is RECOMMENDED when serialising to UTF-16, but is
NOT RECOMMENDED when serialising to UTF-8.

Note — This follows the advice in §2.6 of [Unicode] that “Use of a BOM is neither required
nor recommended for UTF-8”.
4 Parsing and serialising structures

4.1 Parsing lines

For a line string to be parsed into a line, it MusT match the following Line production:

Line
PayloadSep

Number S (XReflLabel S)? Tag (PayloadSep Payload)?
#x20 | #x9

Note — The Line production does not allow leading whitespace because this has already
been removed in the process of creating line strings. The S production is defined in §2.1
of [Basic Concepts] and matches any non-empty sequence of whitespace characters, though
because carriage returns and line feeds are always treated as line breaks which delimit
line strings, in practice the S production can only match space or horizontal tab characters.
Allowing tabs or multiple space characters is a departure from [GEDCOM 5.5.1], but one
that is commonly implemented in current applications.

16



Extended Legacy Format (ELF): Serialisation Format

Only a single character of whitespace is permitted before the payload in the PayloadSep
production. This clarifies an ambiguity in [GEDCOM 5.5.1] where Appendix A warns that
some applications look for the first non-space character as the start of the payload. There
is no explicit statement that such applications are non-compliant, and this has left some
doubt as to whether or not this behaviour permitted. In ELF this is explicitly not allowed
for payloads which are strings.

Whitespace is REQUIRED between each of the four components of the line. This is arguably a
change from [GEDCOM 5.5.1] where the delim grammar production says that the delimiter
is an OPTIONAL space character. Almost certainly that is a typo in the grammar that has
persisted through several versions of GEDCOM, and GEDCOM does not intend the space
to be opTIONAL. Documents written using very early versions of GEDCOM - long before its
current grammar productions were written —did frequently merge the level, cross-reference
identifier and tag together, as in “0@I11@INDI”, but this is not permitted in ELE.

Editorial note — It would be simple enough to modify the grammar so that “0@I1@INDI”
would be supported, and this could help make ELF Serialisation backwards compatible with
GEDCOM 1.0. However the TSC know of no uses of this in files identifying as GEDCOM 5.x
files, and is not generally supported in applications. Almost certainly it is an error arising
from confusion over the two different uses of [...] in GEDCOM grammar productions. Files
created using earlier versions of GEDCOM are only very rarely encountered and their data
model is incompatible with [ELF Data Model]. There seems to be little benefit to supporting
earlier versions of GEDCOM in the serialisation layer but not in the data model.

Example —

0 @I1@ INDI
1 NAME Cleopatra
1 FAMC @F2@

This ELF fragment contains three lines. The first line has a level of 0, a cross-reference iden-
tifier of @11@, and a tag of INDI; it has no payload. Neither the second nor the third line has
a cross-reference identifier, and both have a payload: on the second line the payload is the
string “Cleopatra”, while the payload of the third line is a pointer, @F2@.

Malformed lines are lines or line strings which contain certain particular types of syntactic error. In-
put containing a malformed line is a non-conformant source. If an ELF parser encounters a malformed
line, it sHALL terminate processing the input file.

Note — These parsing rules have been written to be very tolerant of unusual input. Mal-
formed lines are considered sufficiently serious errors that an ELF parser MUST NOT issue a
warning to the user an continue in an implementation-defined manner, despite this usually
being permitted when a non-conformant source is encountered.

Any line string which does not match the Line production is a malformed line.

17



Extended Legacy Format (ELF): Serialisation Format

Note — Empty line strings or line strings consisting only of whitespace are not malformed
lines, despite not matching the Line production, because they have already been removed
from the input stream.

4.1.1 Levels

The Number production encodes the level of the line, which is a non-negative decimal integer that
records how many levels of substructures deep the current structure is nested.

Number ::= "0" | [1-9] [0-9]*

Note — ELF allows the level to be arbitrarily large, whereas [GEDCOM 5.5.1] limits levels
to two decimal digits. This is not expected to cause any practical differences as neither
[GEDCOM 5.5.1] nor the [ELF Data Model] nest structures deeply.

The previous level of a line is defined as the level of the closest preceding line. The first line in the
input stream has no previous level.

Example —

0 INDI

1 NOTE The 16th President of the United States.
2 CONT Assassinated by John Wilkes Booth.

0 TRLR

In this example, the previous level of the TRLR line is 2, which is the level of the NOTE line.

Any line that has a level more than one greater than its previous level is a malformed line. This does
not apply to the first line in the input stream which is never a malformed line.

Example — The following ELF fragment has a missing line.

0 @I1@ INDI

2 PLAC MockBa

3 ROMN Moscow

1 NAME VBaH BacunbeBuu
0 TRLR

The second line of this example is a malformed line because it has a level of 2 and a previous

level of 0.

Note — ELF parsers are REQUIRED to check that the first line string is “0 HEAD” while deter-

mining the specified character encoding per §3.2, which means the first line must always
have a level of 0.

18



Extended Legacy Format (ELF): Serialisation Format

4.1.2 Cross-reference identifiers

The XRefLabel production encodes the cross-reference identifier of the line, which is used when
referencing one structure from another using a pointer, and MAy be omitted when there is no need
to refer to the structure. It is encoded with an “at” signs (@; U+0040) before and after it, which are not
themselves part of cross-reference identifer.

XReflLabel ::= "@" XRefID "@"
XRefID = IDChar+
IDChar = [A-Za-z0-9] | [?$&'*+,;=._~-1]

| [#xAO0-#xD7FF] | [#xF900-#xFFEF] | [#x10000-#xEFFFF]

Example — The following is a well-formed line with a cross-reference identifier of “I11”:

0 @I1@ INDI

Note—[GEDCOM 5.5.1] allows cross-reference identifiers to contain any character other than
a space (U+0020), the “at” sign (U+0040), the CO, C1 and DEL control characters (U+0001 to
U+001F, U+0080 to U+009F, and U+007F), so long as it starts with an alphanumeric ASCII
character. ELF removes the requirement that the first character of a cross-reference iden-
tifier be an alphanumeric ASCII character, and explicitly allows non-ASCII characters in
cross-reference identifiers, though it prohibits the following characters which were allowed
in GEDCOM:

Characters Reason for exclusion

[ Reserved in ELF and GEDCOM pointers
#% [ 1<>"{3} ] \ A\ Require escaping in IRI fragment identifiers

)/ Reserved for future FHISO use
Private use characters Ambiguous without agreed meaning
[#xFFFO-#xFFFE] Require escaping in IRI fragment identifiers

FHISO anticipates using cross-reference identifiers in IRI fragment identifiers in a future
ELF standard, and have therefore prohibited all characters which [RFC 3987] says have to
be escaped in this context.

Editorial note — Is the set of permitted characters right? Even though GEDCOM seems to
allow everything, in practice only alphanumeric ASCII characters seem to be used in actual
GEDCOM data. It would probably therefore be safe to remove further punctuation charac-
ters, if desired.

For maximum compatibility, ELF writers sHOULD prefer cross-reference identifiers which only use
ASCII characters, and sHouLD make the first character of a cross-reference identifier a letter (U+0041
to U+005A or U+0061 to U+007A), decimal digit (U+0030 to U+0039) or underscore (U+005F).

19



Extended Legacy Format (ELF): Serialisation Format

Note — [GEDCOM 5.5.1] requires the first character of a cross-reference identifer to match
[A-Za-z0-9_]. This is downgraded to a recommendation in ELF.

Note — The status of code points above U+00FE in cross-reference identifiers is not entirely
clearin [GEDCOM 5.5.1]. None of its grammatical production mention them, though it seems
likely its otherchar production is intended to include all non-ASCII characters and not just
U+0080 to U+00FE.

4.1.3 Tags

The Tag production encodes the tag of the line which is a REQUIRED string that denotes the meaning
of the data encoded on the line.
Tag ::= [0-9a-zA-Z_]+

The ELF suite of standards defines a selection of tags for representing genealogical data.

Note — These are mostly defined in the [ELF Data Model] standard.

Third parties MAy define additional tags for use in ELF documents in two ways. The first way, which is
deprecated, is to use a legacy extension tag. These are tags beginning with an underscore (_, U+005F).
No legacy extension tags are defined in the ELF standards, and third parties can use them arbitrarily.

Example — The _UID tag is a legacy extension tag which has been implemented in a number
of current applications and typically contains a 128-bit UUID as defined in [RFC 4122].

1 _UID 40ea7ad8-a5ba-4a7a-bb89-615cc2bf6639

Note — Legacy extension tags are how [GEDCOM 5.5.1] allows for extensibilty, and ELF con-
tinues to support this. However, there is no mechanism to prevent two different third
parties from using the same legacy extension tag in incompatible ways. This is why this
mechansism is deprecated in ELF.

Example — The _UID legacy extension tag described in the previous example has also been
used in some applications to contain a 144-bit identifier, which was a UUID followed by a
16-bit checksum. Applications expecting to find a standard 128-bit UUID will likely fail to
parse this 144-bit form.

The second and preferred means of adding third-party tags is to define them in an ELF schema and
reference that schema using a schema reference.

I Editorial note — Revise this paragraph once the relevant section has been written.

The HEAD, TRLR, CONC, CONT, PLANG and DTYPE tags are reserved in all contexts for recording header
records, trailer records, continuation lines, payload languages and payload datatypes and MUST NOT be
used in any other way.

20



Extended Legacy Format (ELF): Serialisation Format

Note — This standard does not reserve any other tags for use as serialisation layer con-
structs in future versions of ELF. If a future standard adds additional tags to this list, they
will only be interpreted conditionally based on the ELF serialisation version.

A tag sHOULD be no more than 15 characters in length.

Note — [GEDCOM 5.5.1] required tags to be unique within the first 15 characters and no
more than 31 characters in length. As the memory constraints that motivated those re-
quirements are no longer common, ELF makes this limit RECOMMENDED only.

Example — The legacy extension tag, _FATHER_OF_BRIDE is a valid tag, but sHouLD NOT be
used because it is 16 characters long.

4.1.4 Payloads

The payload of a line is an opTiONAL value associated with the line, which is encoded by the
Payload production. If present, it SHALL be either a string or a pointer, which are encoded by the
PayloadString and Pointer productions, respectively. The String production is given in §2 of
[Basic Concepts] as a sequence of zero or more characters.

Payload ::= S? Pointer S? | PayloadString
PayloadString ::= String - ( S? Pointer S? )

Note — Even though the payload of a line is encoding the payload of a tagged structure,
which is either a language-tagged string or a pointer, the payload of a line is a plain string
or a pointer. This is because the language tag is encoded on separate lines.

Applications MusT treat a line with an omitted payload identically to a line with a payload consisting
of an empty string.

Note — It is an artefact of the grammar that this distinction exists at all. If the line string
ends with a tag followed by whitespace, then the Line production matchesviatheS String
alternative, with an empty string; however if the line string ends with a tag with no subse-
quent whitespace, then the Line production matches without the final optioNaL Payload
component.

Note — The PayloadString production explicitly excludes any string which matches the
Pointer production (with or without leading or trailing whitespace), which also match the
Stringproduction. This means ELF parsers MUST treat the payload as a pointer if it matches
the Pointer production, and only as a string if it does not.

Editorial note — An earlier draft of this standard used the following PayloadString pro-
duction.

21



Extended Legacy Format (ELF): Serialisation Format

PayloadString ::= PayloadItem*

PayloadItem = PayloadChar | EscapedAt | EscapeSeq
PayloadChar = [ MxA0#xA#xD]

EscapedAt 1i= "ea@"

EscapeSeq ::= "@#" [A-Z] PayloadChar* "@"

This ensures that only strings with correctly escaped “at” signs (U+0040) are allowed in a
payload. This draft does not do this because it would require all “at” signs to be correctly
escaped. In practice, unescaped “at” signs are fairly commonly found in GEDCOM files,
particularly in the payload of EMAIL lines. It is fairly easy to specify ELF so that these can be
accommodated and this draft does so. Many current products appear to allow unescaped
“at” signs in the manner proposed here.

A pointer is a payload which represents a link to another structure. It is encoded using the following
Pointer production.

Pointer ::= "@" [ Mx23#x40#xA#xD] [ M#x40#xA#xD]* "@"

Note — This production allows any character in a pointer, except a line feed (U+000A) and
carriage return (U+000D), which cannot appear in a line string; the “at” sign (@, U+0040),
which is used to mark the end of the pointer; and the number sign (#, U+0023), which is
only prohibited as the first character in order to distinguish pointers from escape sequences.

Note— Although an ELF parser MusT interpret any string matching the Pointer production
as a pointer, in practice only those matching the XRefLabel production in §4.1.2 are valid
as pointers in ELF 1.0. Any other pointers will be discarded as invalid in §XXX, but are
permitted in the grammar for future use.

I Editorial note — Fix the §XXX reference above, once pointer checking has been specified.

Note — [GEDCOM 5.5.1] describes a pointer syntax similar to the following production:
GEDCOMPointer ::= "@" (IDChar+ ":")? XRefID ("!" IDChar+)? "@"

The opTIONAL identifier before the colon (:, U+003A) is used to reference a remote file, and
the optioNAL identifier following the exclamation mark (!, U+0021) is used to reference a
structure within a record. However, GEDCOM provides no means of using these, so they
are effectively reserved for a future version of GEDCOM. They remain reserved for these
purposes in ELF, and a future version of ELF is likely to provide a means of referencing
structures outside the current document.

22



Extended Legacy Format (ELF): Serialisation Format

4.2 Parsing lines into structures

Once line strings have been parsed into lines, the sequence of lines is converted into a sequence of
records.

This process starts by parsing the first line of the input as the first line of a tagged structure using
the procedure given §4.2.1. If that record has substructures then additional lines will be read while
parsing it. This structure is the first record in the dataset, and sHALL be the header record.

Once the header record has been read, it SHALL be parsed according to §5.2 to extract the serialisation
metadata, which affects the subsequent parsing of the file.

If further lines remain after the header record has been fully parsed, then the first of the remaining
lines is parsed as first line of the next record in the dataset, again using the procedure given in §4.2.1.
This process is repeated until no further lines remain, at which point the dataset has the been fully
read.

Note — The process described in this section, together with the guarantee provided by §3.2
that the first line is always “0 HEAD”, ensures that the first line of every record necessarily
has a level of 0.

If the last record has a tag of TRLR, and no cross-reference identifier, payload or substructures, it is
discarded. Such a record is called a trailer record. If the last record is not a trailer record, it is a
malformed structure as defined in §4.2.3.

Note — [GEDCOM 5.5.1] includes a mechanism for splitting a logical document into mul-
tiple physical documents, sometimes called volumes. Only the first volume begins with a
header record and only the last volume ends with a trailer record. This dates to an era when
documents were commonly stored and distributed on floppy disks, and a large GEDCOM
document might exceed the storage capacity of a single disk. This functionality is no longer
necessary and is not widely implemented in present applications. It is not supported in
ELFE.

Once each record has been assembled, an ELF parser sHALL make a second pass over the record pro-
cessing it as described in §4.2.2. This does not apply to the discarded trailer record.

Editorial note — At the moment an ELF parser may do assemble all structures per §4.2.1,
then make a second pass over each record per §4.2.2, or mAy do the second pass over each
record immediately after it has been assembled. This might change.

4.2.1 First pass: assembling

The conversion of lines into structures is defined recursively. To read a structure, the parser starts by
reading its first line, and creates a tagged structure whose components are as follows:

— the cross-reference identifier of the first line;
— the tag of the first line;

23



Extended Legacy Format (ELF): Serialisation Format

— the payload of the first line, provisionally tagged with the “und” language tag if the payload of
the first line is a string rather than a pointer; and
— an empty sequence of substructures.

Note — A default language tag is needed because the payload of a line is either a string or
a pointer, while the payload of a tagged structure is either a language-tagged string or a
pointer.

Editorial note — Expand the previous note to say which section causes the actual language
tag to be set.

The level of the first line of the structure is referred to in this section as the current level.

Note — The current level can also be thought of as the recursion depth. Once the application
has finished reading the structure, its current level is no longer needed.

The parser then repeatedly inspects the next line to determine whether it represents the start of a
substructure of the structure being read. If the next line has a level less than or equal to the current
level, there are no further substructures and the application has finished reading the structure.

Example —

1 DEAT Y
0 TRLR

In the above ELF fragment, the parser reads the first line and creates a structure with a DEAT
tag and a payload of “Y”. It then inspects the following line, but because the following line
has a level of 0 which is less than the level of the first line of the DEAT structure, this indicates
that the DATE structure has no substructures.

Otherwise, the application sHALL recursively parse the next line as the first line of a new structure
and append it to the list of substructures being read. Parsing continues by inspecting the following
line to see if it is the start of another substructure, as described above.

Example —

0 @I1@ INDI

1 NAME Elizabeth

1 BIRT

2 DATE 21 APR 1926
0 TRLR

In this fragment, an application reads the first line and creates an INDI structure. The next
line has a level one greater than the level of the INDI line, so is parsed as the start of a
substructure. The parser creates a NAME structure, and as the level of the following line is no

24



Extended Legacy Format (ELF): Serialisation Format

greater than the level of the NAME line, the NAME structure has no substructures. The NAME
structure is appended as a substructure of the INDI structure.

The parser then repeats the process, looking for further substructures of the INDI structure.
The BIRT line is also one greater than the level of the INDI line, so is also parsed as the start
of a substructure, but this time it has a substructure of its own, namely the DATE structure.
The TRLR line has a level of 0 which tells the parser there are no further substructures of the
INDI structure.

The resultis an INDI structure with two substructures with tags NAME and BIRT, respectively,
the latter of which has a substructure of its own with tag DATE.

4.2.2 Second pass: processing

Once each of record has been assembled, an ELF parser sHALL make a second pass over the record,
processing it and its substructures recursively. Each step of the recursion proceeds as follows.

First, if the structure has a tag of CONC, CONT or TRLR, or if the tag is HEAD and the structure is not the
first record of the input, it is a malformed structure.

I Editorial note — PLANG and DTYPE may need adding to this list.

Note — The CONC or CONT tags musT only be used in continuation lines, as described in §6.4.
They are removed when their parent structure is being processed in this second pass, and
therefore no longer exist when processing recurses into the substructures. The TRLR tag
muUsT only be used for the trailer record which is removed before this second pass. The
HEAD tag musT only be used for the header record. If any of these tags remain at this stage,
it is because they have been misused.

Next, if the ELF parser is schema-aware, the tagged structure sHALL be converted into a typed structure
as described in [ELF Schemas].

Note — A typed structure is defined in [ELF Schemas] as consisting of:

— an OPTIONAL cross-reference identifier;

— a structure type, which is a term encoding the meaning of the structure;
— an opPTIONAL payload, which is either a literal or a pointer;

— a sequence of zero or more child substructures.

This differs from a tagged structure in two ways: first, the tag is replaced with a structure
type, which is an IRI; and secondly, string payloads are literals rather than language-typed
strings. A literal is a tagged string which has both a language tag and a datatype as tags.

In later stages of parsing, the ELF parser either acts on a tagged structure or a typed struc-
ture, depending on whether this conversion has taken place. The word structure is used to
refer to either.

Next, if the payload of structure is a string payload, it is unescaped as described in §6.5.

25



Extended Legacy Format (ELF): Serialisation Format

Note — This step removes any escaped at signs, Unicode escapes or continuation lines from
the structure.

Finally, each substructure of the structure is processed recursively, in order, as described in this sec-
tion.

4.2.3 Errorsin structures
This standard defines two classes of error that can arise when processing a structure.

A malformed structure is a structure with a sufficiently serious error that an ELF parser MUsT detect
the error and MuUsT terminate processing the input file upon encountering one.

A non-conformant structure is a structure with a less serious error. Input containing either a mal-
formed structure or a non-conformant structure is a non-conformant source.

Note — When a non-conformant structure is encountered, the usual rules for non-
conformant sources apply. An ELF parser MusT either terminate parsing or warn the user
about the error. If it continues processing the structure, it does so in an implementation-
defined manner.

Note — The [ELF Schemas] standard defines a third class of erroneous structure called in-
valid structures. ELF parsers are not required to detect these and need not issue an warning
if they do.

4.3 Serialising structures
Each xref structure is encoded as a sequence of one or more lines.
These are of three kinds, in order:

1. The first line of the xref structure
2. Zero or more additional lines of the xref structure
3. The lines that encode each of the xref structure’s substructures (if any)

Note — The constraint that additional lines come before the lines of substructures is never
mentioned by [GEDCOM 5.5.1]. ELF includes it because it appears to have been universally
applied by GEDCOM implementations, and some may depend upon it.

The level of each line is a non-negative integer. The level of a first line is 0 if the xref structure is a
record or the serialisation metadata tagged structures with tag “HEAD” and “TRLR”; otherwise it is one
greater than the level of the first line of its superstructure. The level of an additional line is one greater
than the level of its xref structure’s first line.

Each first line has the same xref id (if any) and tag as its corresponding xref line. Each additional line
has no xref id and either “CONT” or “CONC” as its tag.

26



Extended Legacy Format (ELF): Serialisation Format

Note — Because an xref structure MUsT NOT have either “CONC” or “CONT” as its tag, it is
unambiguous which lines are additional lines and which first line they correspond to.

The payload of the xref structure is the concatenation of the payloads of the first line and all additional
lines, with a line break inserted before the payload of each additional line with tag “CONT”. Because the
payload of a line MUST NOT contain a line-break, there musT be exactly one “CONT”-tagged additional
line per line-break in the xref structure’s payload. The number of “CONC”-tagged additional lines may
be picked arbitrarily, subject to the following:

— Each line sHouLD be no more than 255 octets after a line break has been added and the result
encoded in the target character encoding. This RECOMMENDED limit is increased to 510 octets if
the target character encoding is UTF-16.

Note — GEDCOM REQUIRED that lines not exceed 255 characters; this does not seem to be a
real restriction in most current applications, and hence has been reduced to RECOMMENDED
status. We recommend bytes instead of characters because the implied purpose of this limit
(enabling code to use fixed-width buffers) would limit by bytes, not characters.

— The payload of a line preceding a “CONC”-tagged line sHoULD NOT have an empty payload.
— The payload of a line preceding a “CONC”-tagged line musT NOT end with a whitespace.
— A “CONC”-tagged line’ payload sHOULD NOT begin with whitespace.

Note — [GEDCOM 5.5.1] is inconsistent in its discussion of leading and trailing whitespace.

— The first of rule in the section “Grammar Rules” in Chapter 1 REQUIRES that spaces
be after, not before, a CONC split; they (nonsensically) require the same for CONTs as
well.

— The grammar for optional_line_value in Chapter 1 allows both leading and trail-
ing space, with no permission to remove it.

— The definition of CONC {CONCATENATION} in Appendix A says an implementation
MAY “look for the first non-space starting after the tag to determine the beginning of
the value” and hence leading spaces MUST NOT appear.

— The definition of CONT {CONTINUED} in Appendix A says an implementation MUST
keep leading spaces in a CONT as an exception to the usual rules.

— The definition of NOTE_STRUCTURE in Chapter 2 says that “most operating systems
will strip off the trailing space and the space is lost in the reconstitution of the note.”

The RECOMMENDATIONS above are compatible with the most restrictive of these, while
the REQUIREMENTS with the most limiting of them.

Example — Suppose an xref structure tag is “NOTE”; it’s payload is “This is a test\nwith
one line break”; and its superstructure’s superstructure is a record. This xref structure
requires at least two lines (because it contains one line break) and may use more. It could
be serialised in many ways, such as

27



Extended Legacy Format (ELF): Serialisation Format

2 NOTE This is a test
3 CONT with one line break

or

NOTE This i

CONC s a test
CONT with on

CONC e line break

w w w N

— Each line’s payload musT contain an even number of U+0040 (@). However, during parsing, this
constraint SHALL NOT be enforced in any way.

Note — [GEDCOM 5.5.1] gives no guidance how to handle unmatched “@”, but they are rel-
atively common in gedcom files. The above policy is intended to resolve common invalid
files in an intuitive way.

Example — Given the following non-conformant data

1 EMAIL name@example.com
2 DATE @#DGREG
3 CONC ORIAN@ 2 JAN 2019

a conformant application will concatenate these lines normally during parsing

1 EMAIL name@example.com
2 DATE @#DGREGORIAN@ 2 JAN 2019

creating a valid date escape in the DATE-tagged extended line. The unmatched @ in the EMAIL-
tagged line is left unchanged during parsing.

Upon re-serialisation, the unmatched @ in the “EMAIL” will be doubled when converting to
an xref structure, but the date escape will not be modified

1 EMAIL name@@example.com
2 DATE @#DGREGORIAN@ 2 JAN 2019

If the serialisation decides to split either extended line with CONCs, it MUST NOT do so in a
way that splits up the pairs of “@”s.

4.4 Serialising lines
Editorial note — The payload needs escaping, either here or in the next section.

Each line sHALL be converted to a line string by concatenating together the level, cross-reference identi-
fier, tag and payload as described by the Line production given in §4.1. The application MusT serialise
all line strings with a single space character (U+0020) for each S or PayloadSep productioninthe Line
production, and MusT NoT put additional whitespace before or after payloads which are pointers.

28



Extended Legacy Format (ELF): Serialisation Format

Example — Although ELF parsers are REQUIRED to be able to read the following line string,
ELF writers MUST NOT produce this line string.

1 FAMC @F9@

There are two space characters after the FAMC tag in this example. When parsing, the
first space is matched by the PayloadSep production while the second is matched by the
OPTIONAL S production that comes before the pointer in the Payload production. ELF writ-
ers must not insert additional whitespace before the pointer, and therefore MusT NOT pro-
duce this line string.

5 Header metadata

The header record is the first record in an ELF document. It sHALL have a HEAD tag, no payload and
no cross-reference identifier. The substructures of the header record are called metadata structures,
and contain information about the dataset as a whole.

Certain metadata structures, which are referred to as serialisation metadata structures, are pro-
cessed by the ELF parser during parsing and then removed from the dataset. Each serialisation
metadata structure encodes one piece of serialisation metadata, as determined by the tag of the
serialisation metadata structure. The serialisation metadata affects how the ELF parser processes the
file.

This standard defines five types of serialisation metadata, as given in the following table.

Tag Serialisation metadata

CHAR specified character encoding, as defined in §3.2
ELF ELF serialisation version, as defined in §5.1.1
GED legacy GEDCOM version, as defined in §5.1.2
PLANG default payload language

SCHMA  schema reference

Note — These tags are not reserved in other context, except as specified in §XXX for the
PLANG tag. This standard does not reserve any tags for future use as serialisation metadata
structures. If a future standard adds new ones, they will only be interpreted conditionally
based on the ELF serialisation version.

I Editorial note — Fix this reference.

Note — The escaping facilities in §6, including Unicode escapes and continuation lines, can-
not be used in serialisation metadata structures because these facilities are only interpreted
after the serialisation metadata structures have been processed. Other metadata structures
MAY use these facilities.

29



Extended Legacy Format (ELF): Serialisation Format

Example — The following fragment does not contain a Unicode escape in the ELF serialisa-
tion metadata structure, and so does not represent the version 1.0. It is simply interpreted
as the string “1@#U2E@0”. This is not a valid version number, as defined in §5.1, and there-
fore the ELF structure is a non-conformant structure. An ELF parser MUST either terminate
processing on encountering it, or issue a warning.

0 HEAD
1 ELF 1@#U2E@Q

Example — The following fragment contains a NOTE metadata structure whose pay-
load, after unescaping, is the string “Ceci est une note longue a propos de ce
document”.

0 HEAD

1 NOTE Ceci est une note longue @#UCO@ pro
2 CONC pos de ce document

2 PLANG fr

0 TRLR

This is allowed because the NOTE tag does not denote a serialisation metadata structure.
The PLANG substructure does not denote a serialisation metadata structure because it is not
a direct substructure of the header record.

5.1 Version numbers

The payload of the ELF serialisation metadata structure, and the payload of the VERS substructure of
the GEDC serialisation metadata structure both contain a version number, which is a string used to
record the version of a standard that matches the following Version production:

Version ::= Integer "." Integer ( "." Integer )?
Integer ::= [0-9]+

The three components represented by the Integer production are decimal integers, and may include
leading zeros which are ignored. These components are called the major version, minor version
and revision number, respectively. If the revision number is omitted, a value of 0 is assumed.

Example — The following three numbers version are exactly equivalent:

1 ELF 1.0
1 ELF 1.0.0
1 ELF 1.000

30



Extended Legacy Format (ELF): Serialisation Format

5.1.1 ELF serialisation version

The ELF serialisation version is a version number located in the payload of the ELF serialisation meta-
data structure, and indicates the version of the ELF Serialisation standard with which the document
complies.

The version number of this version of the standard is 1.0.0. An ELF writer producing output ac-
cording to this standard musT include this ELF serialisation version in the output if the generated file
contains any Unicode escapes, schema references, payload languages or payload datatypes.

Note — This is not an absolute requirement so that ELF writers can produce output that can
be read by strict GEDCOM parsers which reject input containing any unknown tags other
than legacy extension tags, or escape sequences.

Ifan ELF parser isreading a document with an ELF serialisation version which differs from the version
number of this standard only by the revision number, the ELF parser musT parse the input according
to this standard.

If an ELF parser encounters an ELF serialisation version which has a different minor version to this
standard, but the same major version, it sHOULD parse the input according to this standard, but
SHOULD issue a warning to the user that the document is in an unknown version of ELF.

If an ELF parser encounters an ELF serialisation version with a different major version, the document
is a non-conformant source.

Note — These rules are designed to handle forwards compatibility. A future version of this
standard is likely to need to change these to better handle backwards compatibility with
earlier versions of ELF.

5.1.2 Legacy GEDCOM version

The legacy GEDCOM version is a version number located in the payload of the VERS substructure of
the GEDC serialisation metadata structure, and indicates the version of GEDCOM which the document
is compatible with.

This standard, when used together with the [ELF Data Model], is compatible with both GEDCOM 5.5
and GEDCOM 5.5.1. An ELF writer producing output according to this standard musTt include a legacy
GEDCOM version of either 5.5 or 5.5. 1 in the output if it omitted the ELF serialisation version or if it
included no schema references in the output, and sHouLD do so otherwise if the document conforms
to the [ELF Data Model].

Note — This recommendation means that a legacy GEDCOM version might be generated
claiming compatibility with a version of GEDCOM that it is not strictly compatible with.
In practice, it is common to encounter GEDCOM files that are not strictly compatible with
the claimed version of GEDCOM, and GEDCOM parsers are typically tolerant in what they
accept. Nevertheless, an ELF writer can always opt not to include a legacy GEDCOM version,
so long as an ELF serialisation version and appropriate schema reference are included.

31



Extended Legacy Format (ELF): Serialisation Format

If an ELF parser encounters a legacy GEDCOM version other than 5.5 or 5.5. 1, the document is a
non-conformant source.

Example — The following ELF fragment encodes a legacy GEDCOM version of 5.3, which
was used by an abandoned draft of GEDCOM back in 1993.

0 HEAD
1 GEDC
2 VERS 5.3

An ELF parser MAY accept this and continue parsing the data in an implementation-defined
manner, which might involve handling some constructs contrary to the ELF standards. If
an ELF parser does continue parsing this non-conformant source, it MUST issue a warning to
the user.

5.2 Parsing serialisation metadata

Once a header record has been assembled as described in §4.2.1, the ELF parser SHALL iterate over its
substructures looking for structures with a tag of CHAR, ELF, GED, PLANG or SCHMA. These substructures
are identified as serialisation metadata structures and each is processed as specified in this section.

Any serialisation metadata structure, or any structure nested within a serialisation metadata structure
regardless of the depth of the nesting, is a non-conformant structure if it has a cross-reference identifier,
or if it has a tag of HEAD, TRLR, CONC or CONT, or if it has a payload which is a pointer.

Editorial note — The restriction about pointers might need to be relaxed in a future draft,
depending on how exactly internal schemas are implemented.

Example — The SCHMA structure in the following document is a non-conformant structure:

0 HEAD

1 SCHMA https://example.com/this/is/a/very/long/IRI
2 CONC /which/has/been/continued/on/to/two/lines

0 TRLR

Note — For forward compatibility, this standard does not put limits on what substructures
a serialisation metadata structure can have. Unknown substructures are ignored.

If a header record contains two or more serialisation metadata structures with the same tag, and that
tag is not SCHMA, the second and subsequent serialisation metadata structures are non-conformant
structures.

Example — The second PLANG structure in this ELF fragment is a non-conformant structure
as a document musT NoT have multiple default payload languages. An ELF parser MUST
either terminate processing the file or issue a warning.

32



Extended Legacy Format (ELF): Serialisation Format

0 HEAD
1 PLANG nds
1 PLANG de

If the serialisation metadata structure has a tag of CHAR, it is deleted from the header record with no
further processing.

Note — This serialisation metadata structure contains the specified character encoding
which was already read in §3.2.

If the serialisation metadata structure has a tag of ELF, and its payload is not a valid version number,
it is a non-conformant structure. Otherwise, the version number in its payload is interpreted as the
ELF serialisation version as described in §5.1.1, and the structure is deleted from the header record.

Example — The following fragment of a header record encodes an ELF serialisation version
of 1.0:

0 HEAD
1 ELF 1.0

If the serialisation metadata structure has a tag of GEDGC, it is used to determine the legacy GEDCOM
version as follows. The serialisation metadata structure is a non-conformant structure if it has a pay-
load, or if it does not have exactly one substructure with a VERS tag and exactly one substructure with
a FORM tag, or if the payload of the VERS substructure is not a valid version number, or if the payload
of the FORM substructure is not the string “LINEAGE -LINKED”. Otherwise, the version number in the
payload of the VERS substructure is interpreted as the legacy GEDCOM version as described in §5.1.2,
and the whole serialisation metadata structure is deleted from the header record.

Example — The following fragment of a header record encodes an legacy GEDCOM version
of 5.5:

0 HEAD

1 GEDC

2 VERS 5.5

2 FORM LINEAGE-LINKED

Example — The GEDC serialisation metadata structure in the following header record is a
non-conformant structure for two reasons: first, its VERS substructure is not a valid version
number because of the trailing “EL”; and secondly, because there is no FORM substructure.

0 HEAD
1 GEDC
2 VERS 5.5.1 EL

33



Extended Legacy Format (ELF): Serialisation Format

6 Escaping

Once structures have been assembled from the lines forming them, and converted to a typed structures
if the application is schema-aware, any string payloads need to be unescaped.

ELF uses the “at” sign (@; U+0040) in the representation of pointers, as well as in escape sequences
which are used to encode a special processing instructions in a string payload. Other uses of the “at”
sign in payloads which are strings sHOULD be escaped, and MusT be when not escaping it would result
in an ambiguity.

Note — [GEDCOM 5.5.1] says they MUsT be escaped, but many current applications fail to
do this. This is particularly relevant to the EMAIL structure which almost invariably has
a payload containing one “at” sign, and is often not properly escaped in real-world data.
Payloads with a single “at” sign are never legal in GEDCOM. ELF requires such payloads to
be interpreted as if the “at” sign had been escaped.

ELF provides two escape mechanisms which can escape an “at” sign in a payload. The RECOMMENDED
mechanism is to use an escaped at sign, defined in §6.1. The alternative is to use a Unicode escape,
which is a more general escape mechanism defined in §6.3 that allows arbitrary Unicode characters
to be encoded. Unicode escapes are an example of an escape sequence, which is a general facility for
embedding special processing instructions in a string payload. Escape sequences are defined in §6.2.

6.1 Escaped at signs

An escaped at sign is a string matching the EscapedAt production below, and is used to represent a
single “at” sign in a string payload.

EscapedAt ::= "@@"

Example — An escaped at sign simply doubles up the “at” sign. Thus, the email address
name@example. com sHOULD be encoded as follows:

1 EMAIL name@@example.com

6.2 Escape sequences

An escape sequence is a string that can be used in a string payload to denote some form of special
processing instruction.

Note — It is the intention that escape sequences are only used to denote processing instruc-
tions that are carried out at the serialisation layer, as defined in this standard or a subse-
quent version of it. The use of escape sequences to denote calendars in [ELF Dates] is not an
example of the intended use of escape sequences in ELF, though it is supported for compat-
ibility with [GEDCOM 5.5.1].

An escape sequence sHALL match the following EscapeSeq production.

34



Extended Legacy Format (ELF): Serialisation Format

EscapeSeq 1:=  "@#" EscapeType EscapeValue "@"
EscapeType = [A-Z]
EscapeValue = [Mx40#xA#xD]*

Example — The following line contains an escape sequence:
2 DATE @#DFRENCH R@ 6 COMP 11

Escape sequences containing internal spaces are explicitly allowed by this standard and this
example uses the D escape type to write a date using the French Republican calendar defined
in §4.3 of [ELF Dates].

Note — This production differs in two ways from the equivalent production in [GEDCOM
5.5.1]. First, the character immediately following the initial “@#” MuUsT be an upper-case
ASCII letter in ELF. This was formerly a requirement in GEDCOM too, but was dropped
after GEDCOM 5.3; nevertheless, all uses of escape sequences in past and present GEDCOM
standards have conformed to this syntax requirement, and ELF reintroduces it.

Secondly, the production does not require a character after the final “at” sign, meaning that
a space character immediately after an escape sequence is treated as part of a string payload
and not as part of the escape sequence. This change has been made so that Unicode escapes
can be used internally in a word, without requiring a space afterwards. For example, the
Portuguese name Jodo might be encoded as:

1 NAME Jo@#UE3@o

Editorial note — Is the second change likely to cause problems? Are there current applica-
tions which will issue an error when they encounter a escape sequence which is not followed
by a space, but will accept unknown escape sequences?

The escape type of an escape sequence is the single character matched by EscapeType production.
It defines how the escape sequence is to be interpreted. This standard defines one escape type: the
character U is used to represent Unicode escapes, as defined in §6.3.

Note — [ELF Dates] defines the D escape type for specifying calendar names, and this is the
sole use of escape sequences in [GEDCOM 5.5.1]. Previous versions of GEDCOM have used the
A escape type for referencing multimedia objects in auxiliary files, C for switching character
encoding, F for including data from another file, and L for recording the number of octets
of binary data immediately following. ELF does not support these character escapes, but
FHISO is unlikely to reuse these escape types in future version of ELF unless for a compatible
feature.

This standard reserves all possible escape types for future FHISO use. Third parties MUST NOT use
their own escape sequences, except as permitted by a FHISO standard.

35



Extended Legacy Format (ELF): Serialisation Format

Note — This restriction is necessary because only 26 escape types are possible, and between
ELF and past versions of GEDCOM, six of these have already been used. A future ELF stan-
dard may define an extensibility mechanism for escape sequences which will allow third
parties to define their own escape sequences in a way that does not need exclusive use a

escape type.

Editorial note — This extensibility mechanism is likely to be in [ELF Schemas], and could
be as simple as a escape type to IRI mapping to define how the escape type is used in that
particular document. For example,

0 SCHMA
1 ESC B https://example.com/binary-escape

Possibly this will be included in ELF 1.0, and if so, the paragraph above reserving all escape
sequences will need changing. But the TSC do not consider this feature a priority for ELF
1.0.

The escape value of an escape sequence is the string matched by the EscapeValue production. The
meaning of the escape value and any restrictions on its content or format depend on the particular
escape type. The only general restriction placed on all escape values is that they MmusT NOT contain the
“at” sign (U+0040), line feed (U+000A), or carriage return (U+000D).

Note — Although almost any character is permitted in an escape value, in practice, the range
of characters that can actually occur in an escape value in ELF 1.0 is quite limited. ELF 1.0
only uses two escape types — D for calendar escapes and U for Unicode escapes — and does
not allow third parties to define their own. The Unicode escape syntax defined in §6.3 only
allows whitespace and hexadecimal digits to appear in the escape value, while the calendar
escape syntax defined in §3.1 of [ELF Dates] only allows whitespace and ASCII letters. This
means no punctuation characters can actually occur in an escape value in ELF 1.0, even
though they are permitted in the generic syntax and musT be accepted in unknown escapes
sequences. A future version of ELF might reserve one or more currently unused character
for a specific purpose within an escape sequence.

Editorial note — In particular, it is not possible to put arbitrary IRIs in an escape value,
something which may need considering more carefully in the future, especially if there is
any plan to turn calendar escapes into a more general datatype escape mechanism. The
problem is that “at” signs are allowed in IRIs, and does in mailto IRIs or http IRIs with em-
bedded userinfo. A future version of ELF might reserve a character for escaping characters
within escape sequences. For example, %{...} might be used, something like this:

@#T<https://userinfo%{40}example.com/>@

36



Extended Legacy Format (ELF): Serialisation Format

6.3 Unicode escapes

A Unicode escape is a type of escape sequence that allows arbitrary Unicode characters to be encoded
ELF files, regardless of the character encoding used for the file. ELF parsers are REQUIRED to support
Unicode escapes.

Note — This feature is new in ELF. [GEDCOM 5.5.1] has no means of encoding characters
that cannot be encoded in the target character encoding. Even though ELF does not require
applications to support output in any character encoding other than UTF-8, it is anticipated
that many applications will continue to do so for compatibility reasons. There are also
situations where certain characters might get misinterpreted and corrupted in transit or
when processed by legacy applications, and it would be safer to escape them.

Unicode escapes use the U escape type and has an escape value which is a sequence of zero or more up-
percase hexadecimal integers, separate by spaces. The hexadecimal integers are the code points of the
characters encoded by the Unicode escape. Its escape value sHALL matches the following UnicodeEsc
production.

UnicodeEsc
HexNumber

S? ( HexNumber (S HexNumber)* S? )?
[0-9A-F]+

Example — If the Portuguese name “Jodo” is used in an ELF file encoded with the ASCII
character encoding, it MusT be encoded using a Unicode escape such as this:

1 NAME Jo@#UE3@o

This is not the only possible encoding of the name Jodo. If it written with a combining tilde
character (U+0303) instead of a precomposed ‘a’ with tilde character (U+00E3), it could be
encoded:

1 NAME Joa@#U303@o

[Basic Concepts] allows any string to be converted into Unicode Normalization Form C,
which converts the latter form to the former, so an ELF writer need not preserve the form
in which the accented character was originally entered.

Example — The Unicode escape syntax allows multiple characters to be encoded in a single
escape sequence. This allow a shorter and easier to read encoding of names in non-Latin
scripts. For example, the Arabic name jsjc (Aziz) could be encoded in any of the following
ways:

1 NAME jyjc
1 NAME @#U639@@#U632@@#U64A0@#U632@
1 NAME @#U 639 632 64A 632@

37



Extended Legacy Format (ELF): Serialisation Format

Note — Lower case hexadecimal digits MusT NOT be used in Unicode escapes, so the Turkish
letter ‘¢’ MUST NOT be encoded as @#U11f@.

Note — ELF allows a Unicode escape to encode no characters. An example is @#U@. These
get deleted by an ELF parser during unescaping, as described in §6.5. They are permitted
because they provide an alternative means of protecting necessary trailing whitespace in a
string payload that is to be read by a legacy application or transmitted in a way that would
otherwise remove the whitespace. Putting a @#U@ at the end of the encoded payload might be
preferable to encoding the final character of whitespace if the receiving application ignores
the unknown Unicode escape.

ELF writers MUST use a Unicode escape to encode characters that cannot be encoded in the target
character encoding, but sHouLD NOT use them otherwise without a specific need, and sHoULD prefer
an escaped at sign to a Unicode escape when escaping an “at” sign (U+0040).

Note — This is to maximise compatibility with [GEDCOM 5.5.1] which does not have Unicode
escapes, but which does support the escaped “at”.

Example — An application MAY use Unicode escapes to escape the first or last character of
a string payload when it is whitespace, if the ELF file is likely to be processed by a legacy
GEDCOM application which is known not to preserve leading or trailing whitespace, and if
preservation of that whitespace is important. Such applications exist because the [GEDCOM
5.5.1] is somewhat unclear on whether leading and trailing whitespace had to be preserved,
and different applications have adopted different implementation strategies.

6.4 Line continuation

ELF allows the string payload of a structure to be split across two or more consecutive lines. When this
is done, the first line which contains the start of the string payload is called the continued line and the
subsequent line or lines which contain the remainder of the string payload are called continuation
lines. Any line with a tag of CONT or CONC is a continuation line.

Note — It is in principle possible for an ELF schema to assign other tags for this purpose or
to use these tags for other purposes, but the [ELF Schemas] says this MmusT NOT be done.

CONT continuation lines are used when the value encoded in a string payload needs to contain line
breaks. The part of the string payload following each line break is placed on a continuation line using
the CONT tag, and the line break itself is removed from encoded version of the payload.

Example — CONC continuation lines are commonly used when preserving the layout of frag-
ment of a text found in a source, such as the following three lines of text found on a sepul-
chral brass:

4 TEXT Pray for the soule of Edward Cowrtney esquyer secunde son

38



Extended Legacy Format (ELF): Serialisation Format

5 CONT of sr Willm Cowrtney knyght of Povderam, which dyed the
5 CONT firrst day of mch Ano dom mvcix on whos soule ihu have mci

CONC continuation lines are used when it is desirable to split a string payload which does not contain
a convenient line break across several lines. The payload is split at an arbitrary place which sHoULD
be between two characters that are not whitespace.

Note — Although ELF parsers are REQUIRED to support arbitrarily long lines, it is
RECOMMENDED for compatibility with [GEDCOM 5.5.1] that ELF writers SHOULD split
lines in such a way that no line string exceeds 255 characters in length. It is RECOMMENDED
that the split is mid-word because GEDCOM parsers have historically not always preserved
leading or trailing whitespace on lines. If a string payload is split adjacent to a whitespace
character and the result is read by such an application, the whitespace between two words
can become lost.

Example — CONC continuation lines can also be useful for breaking string payloads when
shorter lines are desirable — such as to prevent the examples in this standard from line-
wrapping.

1 NOTE Prof. D. H. Kelley speculates that the mother of King Ecg
2 CONC berht of Wessex was a daughter of Ethelbeorht II of Kent.

In the fragment above, the NOTE structure has a string payload which contains no line breaks
and where the name Ecgberht is single word.

Applications MUST NOT assign significance to where CONC continuation lines are inserted nor to how
many are present in the serialisation of a string payload.

Editorial note — The TSC considered adding a third type of continuation line, which would
have provisionally used a CONSP tag. It was designed for splitting on a space character
without relying on leading or trailing whitespace being preserved in the payload of lines. It
would have worked like CONT, except that instead of replacing a line break it would replace
a space character (U+0020).

1 NOTE This is a long line which has been
2 CONSP split using the new mechanism.

After further consideration and consultation it was felt that the use cases for this were not
sufficient to justify adding a new feature to ELF, however the TSC welcome further opinions
on this.

39



Extended Legacy Format (ELF): Serialisation Format

6.5 Unescaping string payloads

In order to unescape a string payload of a structure, an ELF parser sHALL first identify all escaped
at signs and escape sequences in the string payload per §6.5.1, and verify that each identified escape
sequence is a permitted escape for the structure in whose payload it was found, as described in §6.5.2.

Next, each identified escaped at sign is replaced with a single “at” sign, and each identified Unicode
escape is replaced with the character it encodes. Escape sequences other than Unicode escapes are left
unaltered.

Note — Because all escaped at signs and escape sequences are identified before any are un-
escaped, it is not possible to apply both forms of escaping sequentially to a single character.
For example, neither of the following structures are valid ways of encoding a string payload
consisting of a single “at” sign.

0 NOTE @@#uU40@@
0 NOTE @#U40@@#U40@

The former is the RECOMMENDED way of encoding a payload which consists of the string
“@#U40@”, while the latter is an alternate encoding (which is NoT RECOMMENDED) of the
string “@@”.

Finally, any substructures corresponding to continuation lines are identified and their payloads
merged into the payload of their parent structure, as described in §6.5.3.

Note — As continuation lines are merged after escaped at signs and Unicode escapes are
unescaped, the payload of following structure is the literal string “@#U21@” and not a excla-
mation mark (U+0021):

0 NOTE @
1 CONC #U21@

6.5.1 Identifying escapes

To identify all the escaped at signs and escape sequences in a string payload, an ELF parser scans the
string from beginning to end looking for “at” signs (U+0040), and then inspects the next character, if
there is one, to determine how the “at” sign is to be interpreted.

If the following character is another “at” sign, then an ELF parser sHALL identify the two “at” signs as
an escaped at sign, and then resume scan for “at” signs from the character following the second “at”
sign.

40



Extended Legacy Format (ELF): Serialisation Format

Example — The @@ in the payload of the following structure is identified as an escaped at
sign.

1 EMAIL name@@example.com

Otherwise, if the following character is the number sign (#; U+0023), then an ELF parser sHALL identify
these two characters as the start of an escape sequence, terminating at the subsequent “at” sign. If
there is no subsequent “at” sign, or if the string identified as an escape sequence does not match the
EscapeSeq production, the structure containing this string payload is a non-conformant structure. If
a syntactically correct escape sequence was identified, the ELF parser SHALL resume scanning for “at”
signs from the character following the second “at” sign.

Example — In this example, the @# is treated as the start of an escape sequence, but because
there is no subsequent @, it is a non-conformant structure, and an ELF parser MusT either
terminate parsing or issue a warning to the user.

0 NOTE Lines containing only a @# are non-conformant.

Example — If the character immediately after the @# is not an upper-case ASCII letter, the
escape sequence does not match the EscapeSeq production and the result is also a non-
conformant sturcture. This example is a non-conformant structure for that reason.

0 NOTE Following a @# with a @ isn't necessarily conformant.

Otherwise, the “at” sign is treated as a regular character, and scanning for “at” signs continues from
the next character. This facility for treating unescaped “at” signs as regular characters is deprecated.

Example — This applies in the following structure, where the “at” sign has not been properly
escaped.

1 EMAIL name@example.com

ELF parsers MusT accept this, but a future version of ELF is likely to make this a non-
conformant structure.

Example — The following table illustrates how some more complicated string payloads are
parsed into strings, escaped at signs, escape sequences and bare “at” signs.

41



Extended Legacy Format (ELF): Serialisation Format

String payload

Parsed as

“name@example.com”
“name@@example.com”
“name@@@example.com”
“name@@@@example.com”
“some@#XYZ@thing”
“some@@#XYZ@thing”
“some@@@#XYZ@thing”
“@#XAee#YB@”

“name”, “@”, “example.com”
“name”, “@@”, “example.com”
“name”, “@@”, “@”, “example.com”
“name”, “@@”, “@@”, “example.com”
“some”, “@#XYZ@ 7, “thing”
“some”, “@@”, “#XYZ”, “@”, “thing”
“some”, “@@”, “@#XYZ@”, “thing”
“@#XA@”, “@#YBQ”

6.5.2 Permitted escapes

A permitted escape is an escape sequence with an escape type that is permitted to occur in a particular
structure. If a string payload contains an escape sequence other than an permitted escape, the structure

is a non-conformant structure.

If the application is schema-aware, permitted escapes are identified as described in the [ELF Schemas]
standard. Otherwise, permitted escapes are identified as described in this section.

If the escape type is U, then the escape sequence is a permitted escape.

Note — Unicode escapes are not permitted in serialisation metadata structures, however
these have been removed from the document before the ELF parser attempts to unescape

the payload.

If the escape type is D, then the escape sequence is a permitted escape.

Example — The following structure contains two instances of escape sequences with the
escape type D, which is denotes a calendar escape in §3.1.1 of [ELF Dates]. Both uses are
permitted escapes, despite the fact that ages, as defined in §6 of [ELF Dates], do not allow

the use of calendar escapes.

1 DEAT

2 DATE @#DJULIAN@ 30 JAN 1649

2 AGE @#DJULIAN@ 48y

Note — Escape sequences with the D escape type are permitted escapes everywhere so that
that serialisation layer is compatible with future versions of ELF which may choose to allow
calendar escapes in other contexts. For example, a future version of ELF could allow calen-
dar escapes to be used with ages because the length of a year can depend on the calendar
being used. Schema-aware applications are better able to determine whether the calendar
escape is really a permitted escape.

An escape sequence with any other escape type is not a permitted escape.

42



Extended Legacy Format (ELF): Serialisation Format

Note — This means that when a non-schema-aware application encounters a escape
sequence which is not defined in ELF 1.0, it treats the structure containing it as a non-
conformant structure and musT either issue a warning or terminate processing. This
behaviour has been chosen because escape sequences are intended to be used in ELF to
represent processing instructions that need handling in the serialisation layer. This is how
escape sequences were originally used in GEDCOM and is true of Unicode escapes in ELF.
Calendar escapes do not conform to this model, as they are interpreted by the data model.
It is FHISO’s current intention not to make further use of data model escape sequences and
eventually to deprecate calendar escapes. If a future version of ELF does introduce further
escape sequences which need handling in the data model, they will not be backwards
compatible with non-schema-aware ELF 1.0 applications.

6.5.3 Merging continuation lines

Substructures with a tag of CONC or CONT are called a continuation substructures. They correspond
to continuation lines.

Note —In a schema-aware application, the current structure has been converted into a typed
structure at the point when continuation lines are merged as per this section, however their
substructures have not yet been converted. Therefore, continuation substructures can be
identified by their tag, even in schema-aware applications.

A continuation substructure is a malformed structure if it has a cross-reference identifier, or has a non-
empty list of substructures, or is a substructure of a continuation substructure, or is preceded in the
list of substructures by a structure other than a continuation substructure. Likewise, any record whose
tag is CONT or CONC is a malformed structure.

Note — Continuation substructures MAY have an empty payload, and a structure MAY have
a mixture of CONC and CONT continuation substructures.

Example — The third line of this example is a malformed structure because the NOTE struc-
ture has another substructure before the continuation substructure — namely, the REFN struc-
ture.

0 NOTE Start of note
1 REFN 5bb43407-9f24-4b42-b00e-c32cc0f09d21
1 CONT End of note

A continuation substructure is a non-conformant structure if it has a payload which is a pointer.

Example — The second line of this example is a non-conformant structure because it is a
continuation structure whose payload is a pointer.

0 @N1@ NOTE This can be found in:
1 CONT @F1@

43



Extended Legacy Format (ELF): Serialisation Format

The NOTE line is the continued line, and has a valid cross-reference identifier. 1t is only con-
tinuation lines and not continued lines that MUsT NOT have cross-reference identifiers.

Note — Continuation lines containing pointers are considered a less serious error than the
other ways in which continuation lines might be malformed. This is because these are more
likely to appear in legacy data. If these lines were considered malformed structures, an ELF
parser would be REQUIRED to halt parsing on encountering them. By making them only non-
conformant structures, an ELF parser MAy still halt parsing, but mAy alternatively opt to
issue a warning and continue parsing, perhaps by treating the pointer as a string payload
instead.

If a structure has any continuation substructures, each is merged with the parent structure in the order
they appear in the list of substructures, as follows.

If a CONC continuation substructure is encountered, an ELF parser sHALL first append a line break to
the payload of the parent structure. The form of line break appended is implementation-defined, but
all inserted line breaks musT have identical lexical forms.

Note — A line break is defined in §2.1 of [Basic Concepts] as a line feed (U+000A), carriage
return (U+000D) or carriage return and line feed pair (U+000D U+000A). These are native
line endings used on Unix, Linux and modern Mac OS; older versions of Mac OS; and Win-
dows, respectively. It is anticipated, though not REQUIRED, that an application will use the
relevant native form of line break for that platform.

Then, regardless of the type of continuation substructure, the payload of the continuation substruc-
ture sHALL be appended to the payload of the parent structure, and the continuation substructure is
removed from the parent’s list substructures.

Example — This NOTE structure has three continuation substructures followed by one other
substructure.

0 NOTE This paragraph is sufficiently long that it has proved con
1 CONC venient to wrap it onto a second line.

1 CONT

1 CONT This is a short paragraph.

1 REFN 8e445bb6-cb27-4c12-8c74-e051395639c2

None of the lines in this example contain trailing whitespace. Once continuation substruc-
tures have been merged, this example consists of a NOTE structure whose string payload
is “This paragraph is sufficiently long that it has proved convenient to
wrap it onto a second line.\n\nThis is a short paragraph.” In this explana-
tion, \n denotes a line break of unspecified form. This is for exposition only and does not
form part of the ELF syntax.

After merging continuation substructures, the NOTE structure has just one substructure — the
REFN structure.

44



Extended Legacy Format (ELF): Serialisation Format

7 Encoding with @

7.1 Pointer conversion

If a tagged structure is pointed to by the pointer-valued payload of another tagged structure, the pointe-
to tagged structure’s corresponding xref structure sHALL be given an xref id, a string matching pro-
duction XrefID.

XrefID ::= "@" ID "@"
ID [0-9A-Z_a-z] [#x20-#x3F#x41-#x7E]*

It musT NOT be the case that two different xref structures be given the same xref id. Conformant
implementations MUST NOT attach semantic importance to the contents of an xref id.

It is REcOMMENDED that an xref id be no more than 22 characters (20 characters plus the leading and
trailing U+0040)

Note — [GEDCOM 5.5.1] REQUIRED that xref id be no more than 22 characters. ELF weakens
this to a RECOMMENDATION.

Each record sHouLD be given an xref_id; each non-record structure sHOULD NOT; and each serialisation
metadata tagged structure MusT NOT be given an xref id.

Editorial note — Since a pointed-to structure sHALL have an xref id and a non-record MUST
NoOT, implicitly a structure sHOULD NOT point to a non-record. We should probably either
make that explicit or remove it—the latter may make more sense as what is pointed to
seems to be more a data model decision than a serialisation decision. However, GEDCOM is
fairly clear that pointers to non-records might in the future be enabled with a non-standard
xref_id syntax.

The xref structure that corresponds to a tagged structure with a pointer-valued payload has, as its
payload, an xref: a string identical to the xref_id of the xref structure corresponding to the pointed-to
tagged structure.

When parsing, if xref payloads are encountered that do not correspond to exactly one xref structure’s
xref id, that payload sHALL be converted to to a pointer to a record with tag “UNDEF”, which sHALL
NOT have a payload nor substructures. It is RECOMMENDED that one such “UNDEF” tagged structure be
inserted for each distinct xref.

Note —The undefined pointer rule is designed to minimize the information loss in the event
of a bad serialised input.

Note — This rule does not handle pointer-to-wrong-type; information needed to determine
that is not known be serialisation and thus must be handled by the data model instead.

45



Extended Legacy Format (ELF): Serialisation Format

Editorial note — We could also allow pointer-to-nothing or pointer-to-multiple-things to be
dropped from the dataset, and/or provide disambiguation heuristics for pointer-to-multiple-
things situations. This draft does not do so as it is not obvious that the benefit is worth the
complexity.

7.2 Escape preservation and removal
If the escape type is U (U+0055), the escape is a unicode escape and its handling is discussed in §6.3;
otherwise, it is handled according to this section.

7.2.1 Serialisation

If an escape is in the payload of an tagged structure whose tag is an escape preserving tag, and if the
escape’s escape type* is in the tag’s set of preserved escape types, then the escape sHALL be preserved
unmodified in the corresponding xref structure’s payload.

Example — If a “DATE” tagged structure has payload “ABT @#DJULIAN@ 1540~ its corre-
sponding xref structure’s payload is also “ABT @#DJULIAN@ 1540”.

Otherwise, a modification of the escape sHALL be placed in the xref structure’s payload which is iden-
tical to the original escape except that each of the two @ sHALL each be replaced with a pair of consec-
utive U+0040 @.

Example — If a “NOTE” tagged structure has payload “ABT @#DJULIAN@ 1540”, its corre-
sponding xref structure’s payload is “ABT @@#DJULIAN@@ 1540”.
7.2.2 Parsing

If an escapeis in the payload of an xref structure whose tag is an escape preserving tag, and the escape’s
escape type* is in the tag’s set of preserved escape types, the escape sHALL be preserved unmodified
in the corresponding tagged structure’s payload.

Example —1If a “DATE” xref structure has payload “ABT @#DJULIAN@ 15407, its correspond-
ing tagged structure’s payload is also “ABT @#DJULIAN@ 15407.

Otherwise, the escape sHALL be omitted from the corresponding tagged structure’s payload.

Example —1If a “NOTE” xref structure has payload “ABT @#DJULIAN@ 15407, its correspond-
ing tagged structure’s payload is “ABT 1540”.

Note — The decision to remove most escapes is motivated in part because [GEDCOM 5.5.1]
does not provide any meaning for an escape other than a date escape. This caused some
ambiguity in how such escapes were handled, which ELF seeks to remove. Lacking a se-
mantics to assign these escapes, ELF chooses to simply remove them. Implementations that

46



Extended Legacy Format (ELF): Serialisation Format

had assigned semantics to them were actually imposing non-standard semantics to those
payloads which are more accurately handled by using an alternative ELF schema to map
those tags to different structure type identifiers with those semantics documented.

7.3 Encoding @s

Editorial note — It might be worthwhile to restrict this entire section to non-escape preserv-
ing tags; without that we have a (somewhat obscure) problem with the current system:

Consider the escape-preserving tag DATE. A serialisation/parsing sequence applied to the
string “@@#Dx@@ yz” yields

1. encoded “@@#Dx@@ yz”
2. decoded “@#Dx@ yz”
3. encoded “@#Dx@ yz” — not with @@ because it matches a date escape

During serialisation, each U+0040 (@) that is not part of an escape sHALL be encoded as two consecutive
U+0040 (@@).

Example — The tagged structure payload “name@example. com” is serialised as the xrefstruc-
ture payload “name@@example.com”

8 Serialisation metadata

The tagged structures representing the dataset are ordered as follows:

1. A serialisation metadata tagged structure with tag “HEAD” and the following substructures:
— A serialisation metadata tagged structure with tag “CHAR” and payload identifying the
character encoding used; see §8.1 for details.
— Aserialisation metadata tagged structure with tag “SCHMA” and no payload, with substruc-
tures encoding the ELF Schema.
— Each tagged structure with the superstructure type identifier elf:Metadata, in an order
consistent with the partial order of structures present in the metadata.
2. Each tagged structure with the superstructure type identifier e1f :Document, in arbitrary order.
3. A serialisation metadata tagged structure with tag “TRLR” and no payload or substructures.

8.1 Charcter encoding names

The character encoding sHALL be serialised in the “CHAR” tagged structure’s payload encoding name
in the following table:

47



Extended Legacy Format (ELF): Serialisation Format

Encoding Description

Encoding Description

ASCII The US version of ASCII defined in [ASCII].

ANSEL The extended Latin character set for bibliographic use defined in [ANSEL].
UNICODE Either the UTF-16LE or the UTF-16BE encodings of Unicode defined in [ISO 10646].
UTF-8 The UTF-8 encodings of Unicode defined in [ISO 10646].

Note — This value is read as the specified character encoding per §3.2.

It is ReQUIRED that the encoding used should be able to represent all code points within the string;
unicode escapes (see §6.3) allow this to be achieved for any supported encoding. It iSs RECOMMENDED
that UTF-8 be used for all datasets.

9 References

9.1 Normative references

[ANSEL]
NISO (National Information Standards Organization). ANSI/NISO Z39.47-1993. Extended Latin
Alphabet Coded Character Set for Bibliographic Use. 1993. (See http://www.niso.org/apps/
group_public/project/details.php?project_id=10.) Standard withdrawn, 2013.

[Basic Concepts]
FHISO (Family History Information Standards Organisation). Basic Concepts for Genealogical
Standards. Public draft. (See https://fhiso.org/TR/basic-concepts.)

[ELF Schemal]
FHISO (Family History Information Standards Organisation) Extended Legacy Format (ELF):
Schema.

[ISO 10646]
ISO (International Organization for Standardization). ISO/IEC 10646:2014. Information tech-
nology — Universal Coded Character Set (UCS). 2014.

[RFC 2119]
IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Re-
quirement Levels. Scott Bradner, 1997. (See http://tools.ietf.org/html/rfc2119.)

[XML]
W3C (World Wide Web Consortium). Extensible Markup Language (XML) 1.1, 2nd edition. Tim

Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francois Yergeau, and John Cowan eds.,
2006. W3C Recommendation. (See https://www.w3.org/TR/xml11/.)

48


http://www.niso.org/apps/group_public/project/details.php?project_id=10
http://www.niso.org/apps/group_public/project/details.php?project_id=10
https://fhiso.org/TR/basic-concepts
http://tools.ietf.org/html/rfc2119
https://www.w3.org/TR/xml11/

Extended Legacy Format (ELF): Serialisation Format

9.2 Other references

[ASCII]
ANSI (American National Standards Institute). ANSI X3.4-1986. Coded Character Sets — 7-Bit
American National Standard Code for Information Interchange (7-Bit ASCII). 1986.

[GEDCOM 5.5]
The Church of Jesus Christ of Latter-day Saints. The GEDCOM Standard, release 5.5. 1996.

[GEDCOM 5.5.1]
The Church of Jesus Christ of Latter-day Saints. The GEDCOM Standard, draft release 5.5.1. 2
Oct 1999.

[ELF Data Model]
FHISO (Family History Information Standards Organisation) Extended Legacy Format (ELF):
Data Model.

[ELF Dates]
FHISO (Family History Information Standards Organisation) Extended Legacy Format (ELF):
Date, Age and Time Microformats. Public draft. (See https://fhiso.org/TR/elf-dates.)

[RFC 4122]
IETF (Internet Engineering Task Force). RFC 4122: A Universally Unique IDentifier (UUID) URN
Namespace. P. Leach, M. Mealling and R. Salz, 2005. (See http://tools.ietf.org/html/rfc4122.)

[Unicode]
The Unicode Consortium. The Unicode Standard — Core Specification, version 12.1.0. See https:
//[www.unicode.org/versions/Unicode12.1.0/.

[XML Names]
W3 (World Wide Web Consortium). Namespaces in XML 1.1, 2nd edition. Tim Bray, Dave Hol-
lander, Andrew Layman and Richard Tobin, eds., 2006. W3C Recommendation. See https:
/[www.w3.0org/TR/xml-names11/.

Copyright © 2017-19, Family History Information Standards Organisation, Inc. The text of this stan-
dard is available under the Creative Commons Attribution 4.0 International License.

49


https://fhiso.org/TR/elf-dates
http://tools.ietf.org/html/rfc4122
https://www.unicode.org/versions/Unicode12.1.0/
https://www.unicode.org/versions/Unicode12.1.0/
https://www.w3.org/TR/xml-names11/
https://www.w3.org/TR/xml-names11/
https://fhiso.org/
https://creativecommons.org/licenses/by/4.0/

	Conventions used
	Overview
	ELF applications
	Parsing
	Serialisation
	Glossary

	Parsing and serialising line strings
	Detecting a character encoding
	Specified character encodings
	Character encodings
	Converting ANSEL to Unicode

	Line strings
	Serialising line strings

	Parsing and serialising structures
	Parsing lines
	Levels
	Cross-reference identifiers
	Tags
	Payloads

	Parsing lines into structures
	First pass: assembling
	Second pass: processing
	Errors in structures

	Serialising structures
	Serialising lines

	Header metadata
	Version numbers
	ELF serialisation version
	Legacy GEDCOM version

	Parsing serialisation metadata

	Escaping
	Escaped at signs
	Escape sequences
	Unicode escapes
	Line continuation
	Unescaping string payloads
	Identifying escapes
	Permitted escapes
	Merging continuation lines


	Encoding with @
	Pointer conversion
	Escape preservation and removal
	Serialisation
	Parsing

	Encoding @s

	Serialisation metadata
	Charcter encoding names

	References
	Normative references
	Other references


