
CFPS 20
(Call for Papers Submission number 20)

Proposal for Handling Partially
Controlled Vocabularies

Submitted by: Proctor, Tony

Type: Technical proposal

Created: 2013-03-13

Last updated: 2013-04-20

URL: Most recent version: http://fhiso.org/files/cfp/cfps20.pdf
This version: http://fhiso.org/files/cfp/cfps20_v1-1.pdf

Description: Proposal for handling partially controlled vocabularies for
types

Keywords: Tag-values, Namespaces, Software-vocabulary

 Family History Information Standards Organisation, Inc. http://fhiso.org/

 Page 2 of 5

Contents

1. Abstract ... 3

2. Proposal ... 3

3. Not Covered or Not Required .. 4

4. Illustration ... 4

5. Use Cases ... 5

6. References ... 5

 Page 3 of 5

1. Abstract

Proposal to adopt a common framework for allowing extensible sets of tag values such as
types. By allowing predefined sets to be extended, this would support the notion of partially
controlled vocabularies.

The proposal eliminates the possibility of clashes, avoids the need for a central registration
scheme, and ensures the data is still transportable between differing compliant products.

2. Proposal

Genealogy and family history involve a number of partially controlled vocabularies for its
types, sub-types, and other taxonomies – collectively referred to here as “tag values”. These
may include event types/categories, person roles/relationships, place types/categories, name
styles, property names, source types, etc.

GEDCOM allowed some extensibility but only by prefixing the tag with an underscore. That
simply declared it as foreign and provided no way to avoid clashes.

STEMMA implements partially controlled vocabularies using XML namespaces. Custom tag
values may be defined by declaring a new namespace using the standard xmlns attribute in
the Dataset header element. The prefix associated with that namespace can then be used to
introduce custom tag values without any fear of clashing. For instance:

<Dataset Name=’Example’
xmlns:MyEvents=’http://mydomain.com/myevents’>

…etc...
<Event>

<Type> MyEvents:xyz </Type>

This mechanism uses the same XML namespace feature that prevents clashes between
element names and attribute names from different origins. XML tag names (elements and
attributes) are deemed to belong to a given namespace and must be qualified using a
namespace prefix if this is not the default one, e.g. <xs:annotation>. The qualified form is
referred to as a QName.

Although the namespace prefix is bound to a namespace URI, the XML standard does not
define how to map a QName to an equivalent URI specific. The XML Schema language
(XSD) concatenates the local tag name and the namespace URI using a ‘#’ separator to
create a Fragment identifier (e.g. http://stemma.parallaxview.co#Dataset) but it is not clear
what happens if the namespace URI already ends with a ‘#’. The RDF model, on the other
hand, simply concatenates the namespace URI and the local tag name with no separator
(e.g. http://stemma.parallaxview.coDataset). Most RDF namespace URIs already end with a
‘#’ (or even a ‘/’) but not always. This is a well-known problem and a possible solution has
been proposed at QNameQuagmire.

This does not directly impact this proposed use of namespaces though. The above custom
Event-type is defined by the pair (http://mydomain.com/myevents, xyz) and the predefined
STEMMA Event-type ‘Union’ is defined by the pair (http://stemma.parallaxview.co/event-type,
Union). The main differences here are that these namespaces apply to tag values, and the
non-default namespaces are local to the associated Dataset.

An XML parser normally discards any namespace prefixes once the XML has been loaded
since they usually just connect names to their respective namespace declarations. The
exception to this is when they have been employed in the value of attributes, or in element
data, as is the case in STEMMA and SOAP. The prefix-to-namespace mapping then has to
be retained and made available to the program loading the XML. This is why the tag-value
namespaces are expected to be associated with the enveloping STEMMA Dataset element
rather than any of elements below it.

http://en.wikipedia.org/wiki/QName
http://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://en.wikipedia.org/wiki/Fragment_identifier
http://stemma.parallaxview.co/#Dataset
http://stemma.parallaxview.codataset/
http://www.openhealth.org/RDF/QNameQuagmire.html
http://mydomain.com/myevents
http://stemma.parallaxview.co/event-type
http://en.wikipedia.org/wiki/SOAP

 Page 4 of 5

3. Not Covered or Not Required

The illustrations here use STEMMA syntax since that model has already successfully used
this scheme. However, the specific syntax is not a mandatory part of the proposal.

This proposal describes a solution based around XML concepts such as namespaces. If the
Data Model standard specifies additional serialisation formats then we should strive to
accommodate the same basic principle in those formats.

The illustration uses the general scheme to define custom evidential properties for a person.
However, these also need support for data-types and cardinality and so are the subject of a
separate proposal.

4. Illustration

This STEMMA example shows a Person that has multiple custom roles in relation to a club
social event. It also defines a custom property to accommodate his membership details.

<Dataset Name=’Multi_Role_Example’
xmlns:roles=’http://mydomain.com/roles’
xmlns:props=’mailto:name@emaildomain.com?subject=properties’>

<ExtendedProperties>

<PersonProperties>
<PropertyDef Name=’props:MemberID’ Type=’Integer’/>

</PersonProperties>
</ExtendedProperties>

<Event Key=’eClubSocial’>

<When><Date><Value> 1960-06-09 </Value></Date></When>
<Type> Social </Type>

</Event>

<Person Key=’pGordonBennet’>

<EventLnk Key=’eClubSocial’>
<Property Name=’Roles’>

<Item> roles:Photographer </Item>
<Item> roles:Host </Item>

</Property>
<Property Name=’props:MemberID’> 2314 </Property>

</EventLnk>
</Person>

</Dataset>

In other words, Gordon Bennet was both the host and the photographer at the club meeting,
and his membership ID was 2314.

 Page 5 of 5

5. Use Cases

It will be impossible to predefine all acceptable tag values in a standard and so the Data
Model must accommodate an easy way of extending the predefined set, and in such a way
that the data remains transportable between different products.

Without a reliable and easy-to-use framework then vendors and users may resort to private
methods outside of the standard and so compromise portability.

6. References
STEMMA Extensible Vocabulary.
http://www.familyhistorydata.parallaxview.co/home/extensibility/extended-vocabularies.

FHISO cfps 36, Custom Properties. http://fhiso.org/files/cfp/cfps36.pdf.

http://www.familyhistorydata.parallaxview.co/home/extensibility/extended-vocabularies
http://fhiso.org/files/cfp/cfps36.pdf

