
CFPS 37
(Call for Papers Submission number 37)

Proposal for a scalable extensibility
mechanism

Submitted by: Smith, Richard

Type: Technical proposal

Created: 2013-04-12

Last updated: 2015-05-30

URL: Most recent version: http://fhiso.org/files/cfp/cfps37.pdf
This version: http://fhiso.org/files/cfp/cfps37_v2-0.pdf

Description: Proposal to address certain extensibility requirements by
using XML namespaces, both in XML formats and in non-XML
formats such as GEDCOM.

Keywords: extensibility, vendor extensions, forwards compatibility,
decentralised development, XML namespaces, URIs,
GEDCOM

 Family History Information Standards Organisation, Inc. http://fhiso.org/

 Family History Information Standards Organisation, Inc. http://fhiso.org/

changelog i of i

Change Log for CFPS 37

2015-05-30 cfps37 v2-0.pdf
Added two new sections detailing the proposed application to
GEDCOM.

2013-04-12 cfps37 v1-0.pdf
Initial version

Abstract

is paper examines the importance of extensibility in a genealogical stan-
dard and indentifies three key principles for an extensibility mechanism. It
examines current practice in  and how it fails these principles. e
extensibility mechanisms used in some other fields are also considered, and
in particular ’s. e paper proposes the adoption of  Namespaces to
provide for extensibility in a  standard, notwithstanding the fact that
may adopt a non- serialisation format. Such a scheme requires the
use of s to identify vendor-specific namespaces, and the paper discusses
how these might be used.

e  Board have said that one option under serious consideration is
that  should define a series of extensions to the current  stan-
dard. e paper concludes with a look at how the  Namespace mecha-
nism can be applied to  tags while retaining backwards compatibil-
ity with the current standard and existing vendor extensions.

1 Introduction

ere several reasonswhy a newgenealogical standard should have awell-defined
mechansim for extension. ese reasons can be divided into three broad groups:

— accommodating vendor-specific extensions;
— anticipating the need for forwards compatibility with a later standard; and
— recognising the modularity required in certain expert systems.

e first case, that of vendor-specific extensions, is the simplest. Experience in
any fields, not just genealogy, suggests that vendors will find reasons for wanting
to extend a standard. e business need to provide their product with a unique
selling point is a frequent reason. Such extensions might be to store additional
metadata relevant to that vendors’ application. An example can be found in the
common _UID extension to  [1]. is example also highlights a problem
with such extensions: they are used incompatibly by different vendors, with dif-
ferent formaing or semantics assumed in different applications. Such naming
conflicts can cause problems migrating data between applications.

But good support for extensions is particularly important to a genealogical stan-
dard because the size and complexity of the field. No standard can feasibly hope
to standardise everything, and therefore vendors are likely to experiment with
a new features, perhaps with a view that they may eventually be standardised.
e  5.5  extensions that improve  5.5’s handling of places is an
example of that [2]. In the future,  or a successor organisation may decide
to standardise certain of these vendor extensions; and  may also wish to
develop the standard itself in new ways. Irrespective of how such developments

2

arise, if a proposed  standard gains traction within the community, it seems
certain that the first version will be succeeded by a second version.

Finally, certain areas are inherently open-ended and an extensible, modular ap-
proach bests suits them. e world has seen scores, probably hundreds, of calen-
dar systems. It is implausible to suggest that  can standardise each of these,
but it is also unreasonable to expect vendors to only ever support the standard
ones. An Icelandic vendor may well want to support the old Icelandic calendar,
for instance. Personal names have many different possible components, and a
standard should accommodate the tagging of matronymics or Japanese postu-
mous names, even though they may not be standardised. Similar consideration
apply to geopolitical data, such as the types of subnational divisions.

2 Principles

Avoid name conflicts
ere should be no danger of conflict between extensions made by differ-
ent vendors. Nor should a vendor extension conflict with future extensions
made by  or its successors. is should also apply to the likes of cal-
endars: one vendor’s implementation of the old Icelandic calendar may not
be compatible with another vendor’s.

Easy reuse of extensions
Where one vendor reuses an extension first introduced by another vendor,
it should be able to indicate that this is the case. is should be possi-
ble without action or consent from the original implementation. (is is a
technical requirement as this paper does not consider legal issues associated
with patents or copyright.)

Decentralised development of extensions
e logistical barrier to creating an extension should be low. An individual
developer wishing to develop an extension should be able to do so in vacuo,
without registering the extension with a central authority such as .

3 Current practice

Where extensions have been made to  outside the official standard, there
is an informal convention that the tags associated with extension are prefixed
with an underscore. is avoids name conflict between vendor extensions and
future standarisation, but as the example of _UID demonstrated, it does not pre-
vent conflict between vendors [1].

In certain relevant  standards, such as  639 language codes, allocation of

3

identifiers is overseen by a central registration authority (the Library of Congress
for  639), and new codes are only allocated aer application to and review by
the registration authority [3]. Private extension are permied with a ‘x-’ prefix,
but there is no means for preventing conflict between extensions.

In a field as self-contained as the enumeration of languages andwith the resources
of Library of Congress, it is reasonable to hope that most languages will be iden-
tified and tagged, and the need for private extensions therefore rare. Genealogy,
as a whole, is not as self-contained, nor are the resources of  comparable to
those of the Library of Congress. Consequentially, the need for private extension
is therefore much greater as is the risk of conflict between extensions.

Many languages based on  have solved this problem using  Namespaces
[4]. Element names (and in some circumstances, other names) have an optional
prefix, separated from the main part of the name by a colon. Such a name is
referred to as a QName, and x:name and name are example with and without a
prefix. e prefix is short-hand for a lengthier unique identifier (a , specifi-
cally) to which the prefix must be bound in a specified manner.

e  Namespaces mechanism for using QNames as tags and binding prefixes
to s has been reused in several formats that are not based on . e World
Wide Web Consortium’s  standard for compact s uses it [5], as does the
Turtle language [6].

4 General proposal

is paper proposes that a future genealogical standard should mandate that any
extensions should bemade in a vendor-specific namespace. Each namespacemust
be formally identified by a  and references to vendor-specific concepts must be
via a prefixed QName, as defined by the  Namespaces specification [4]. e se-
rialisation format adopted must provide syntax for binding prefixes to namespace
s, and in the case that an  serialisation is adopted by , the namespace
binding mechanism in  Namespaces must be used.

is paper does not seek to influence what the choice of serialisation format
should be, and the proposal to adopt one mechanism from  does not make
it necessary to use  for serialisation. Where extensible tag names are required
for the likes of calendars, it is suggested that they too should be QNames. Any
standardised calendars can be unprefixed, while non-standard ones can go in a
vendor namespace.

For consistency, this paper proposes that  allocate a namespace  to the
standard namespace (i.e. the namespace of -defined terms). Whether any

4

form of declaration is required to use the standard namespace in a non- format
is a implementation detail of that serialisation format, and is not considered here.

In , two QNames are the same if they have the same local part and the same
namespace  (or none) — that is, the specific choice of prefix conveys no seman-
tic meaning. Although  Namespaces standard does not provide a single 
represention of a QName, many derived standards (such as  [5] or Turtle
[6]) do so by simply concatenating the namespace  and local part. is paper
proposes  does likewise.

5 Namespace s

e use of s to identify namespaces has several advantages, not least of which
is that it is already standardised [7]. Many  schemes (and particularly the most
common http scheme) use domain names, and mechanisms already exist for the
allocation of domain names. For developers who do not have a suitable domain
name, sites such as http://purl.org/ exist to provide people with persistent
s. In the event that a developer has good reason not to want to use a domain-
based  for the namespace, a mechanism exists for using s as s [8].
However, this paper proposes that a  standard should recommend (but not
mandate) the use of http s.

No requirement is made by the  Namespaces standard that the namespace
 can be used to fetch any document or resource. It is simply an identifier.
Nevertheless the  is commonly used as a means of fetching documentation on
the namespace, and this paper proposes that  recommends (but notmandate)
that, if the vendor wishes to make documentation available on the extensions
provided in the namespace, it should be accessible from that .

6 Application to 

In  5.5, “a tag consists of a variable length sequence of alphanum charac-
ters,” where an “alphanum character” is defined as any character from the 
character class [A-Za-z0-9_]. Tags are explicitly not limited to three or four
characters long: “systems should prepare to handle user tags of greater length.”
is paper proposes that the syntactic space of  tag names is partitioned
in three as follows.

Standard tags are those defined in the  standard, or a future  ver-
sion of it. is paper proposes that no tags containing an underscore should
ever be standardised, which is consistent with past and current practice. ey
should therefore match the  regular expression [A-Za-z0-9]+. INDI, SEX

5

http://purl.org/

and FAMC are all examples of standard tags. Syntactically XYZZY is also a standard
tag, even though such a tag has never been defined in a standard: it should not
therefore be used unless it is defined in a future   standard.

Unprefixed extension tags are the extensions in use today, and match the 
regular expression _[A-Za-z0-9_]+. e common _UID extension is an exam-
ple of one. Some extensions, such as the _PLACE_TYPE tag used in the Personal
Ancestral File, include an underscore internally, and this paper continues to allow
that [9].

Prefixed extension tags are a new class of tags proposed in this paper andmatch the
 regular expression [A-Za-z0-9]+_[A-Za-z0-9]+. As they do not begin
with an underscore, they should not conflict with any existing extensions,* and
no tags of this form have been standardised to date. ey are essentially 
QNames, but wrien in a -compatible syntax. e part of the tag before
the underscore is the prefix, and the part aer it is the local part. An example
prefixed extension tag is FS_ID, where FS is the prefix and ID the local part.

e local part of an unprefixed extension tag is defined as the whole tag excluding
the underscore, and the local part of a standard tag is defined to be the whole tag.

7 Binding prefixes in 

is paper proposes a new standard tag, PRFX, to be placed in the HEAD record
and used to declare prefixes and bind them to their namespace . e PRFX line
value — that is, the content following the PRFX tag — consists of optionally the
prefix followed by a space, followed by the namespace . If the prefix is omit-
ted, the namespace  is bound to the default namespace as used by unprefixed
extension tags. It is not proposed that the  should be enclosed in angle brack-
ets, as this it does not appear to be required in the WWW tag in the  5.5.1
dra [10]. e following example binds both the default namespace and the GEO
prefix to example namespace s.

0 HEAD
1 GEDC
2 FHISO
1 PRFX http://example.com/gedcom-el/
1 PRFX GEO http://example.com/geospatial/
0 @L1@ _LOC

* Some vendors have not stuck to the rule that extensions must begin with an underscore, but a
search through lists on the Internet of known extensions finds nonewith just an internal underscore
[9]. Were a serious conflict with existing extensions to be discovered, the single underscore in the
prefixed extension tag syntax could be doubled up.

6

1 NAME London
1 GEO_LAT 51.507222
1 GEO_LONG -0.1275

e FHISO tag is intended as a way of saying that the file is in a future 
dialect of , which for the purpose of this paper adds just the FHISO and
PRFX standard tags. It is not a core part of this proposal, and may not be thought
necessary.

Per §4, every tag can bemapped to a  by concatenating the namespace  with
the tag’s local part, and this paper recommends that it is this  that applications
use to determine the meaning of the tag, so as to avoid aaching significance
to the prefix (or lack thereo). For the sake of exposition, the  syntax’s
standard namespace  is taken as <http://fhiso.org/gedcom-tags/>.

HEAD <http://fhiso.org/gedcom-tags/HEAD>
FHISO <http://fhiso.org/gedcom-tags/FHISO>
_LOC <http://example.com/gedcom-el/LOC>
GEO_LAT <http://example.com/geospatial/LAT>
GEO_LONG <http://example.com/geospatial/LONG>

is paper suggests that it should illegal to use a prefixed extension tag unless the
prefix has first been bound to a namespace , just as in . Because of the need
for compatibility with existing extensions, it is likely only possible to deprecate
the use of unprefixed extension tags without first binding the default namespace.
is paper leaves the mapping of an unprefixed extension tag to a  undefined
while the default namespace is unbound.

References

[1] Tamura Jones, 2012,e _UID tag — Common  Extension (blog entry),
http://www.tamurajones.net/The_UIDTag.xhtml

[2] GenWiki website, 2009, Gedcom 5.5EL,
http://wiki-en.genealogy.net/Gedcom_5.5EL

[3] Internet Engineering Task Force, 2009, Tags for Identifying Languages (
5646), http://tools.ietf.org/html/rfc5646

[4] World Wide Web Consortium, 2009, Namespaces in  1.0 (ird Edition),
http://www.w3.org/TR/REC-xml-names/

[5] WorldWideWeb Consortium, 2010,  Syntax 1.0 —A syntax for expressing
Compact s, http://www.w3.org/TR/curie/

7

http://www.tamurajones.net/The_UIDTag.xhtml
http://wiki-en.genealogy.net/Gedcom_5.5EL
http://tools.ietf.org/html/rfc5646
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/curie/

[6] WorldWideWebConsortium, 2013, Turtle — Terse  Triple Language, http:
//www.w3.org/TR/turtle/

[7] Internet Engineering Task Force, 2005, Uniform Resource Identifier ():
Generic Syntax ( 3986), http://www.ietf.org/rfc/rfc3986

[8] Internet Engineering Task Force, 2005, A Universally Unique Identifier ()
 Namespace ( 4122), http://www.ietf.org/rfc/rfc4122

[9] New Zealand Society of Genealogists, (undated), Tags in the GEDCOM 5.5
Standard, http://www.gencom.org.nz/GEDCOM_tags.html [accessed: 30
May 2015]

[10] Church of Jesus Christ of Laer-day Saints, 1996, e  Standard
(Dra Release 5.5.1),
http://wiki.webtrees.net/w/images-en/Ged551-5.pdf

8

http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.ietf.org/rfc/rfc3986
http://www.ietf.org/rfc/rfc4122
http://www.gencom.org.nz/GEDCOM_tags.html
http://wiki.webtrees.net/w/images-en/Ged551-5.pdf

